
AD-R124 643 R SYNTARLX-DIRECTED PROGRAMMING ENVIRONMENT FO &THE ADR 1/.
PROGRAMMING LAROUAGE(U) AR FOCE NSOF TEC
MRIGHT-PATTERSON AFB OH SCHOOL OF ENGINEERING

UNCRSIFID EFERGUSON DEC 92 AFIT/GCS/MA/82D-1 F/G 9/2 N

mmhhhhhmhhlm

mhhhhhhhhmmm



... .... I. . ....~ 1 , I ,!2: i I

,. VA1..

-N.

wg

liii.-

N -,

.. 11



OF

A SYNTAX-DIRECTED
PROGRAMMING ENVIRONMENT

FOR THE ADA PROGRAMMING LANGUAGE

THESIS

AFIT/GCS/MA/82D-1 Scott E. Ferguson
Capt USAF

DTIC* _________ I E ECTE
This document has been approved

L.L.I for public release and sale; its 2 41983
__. distribution is unlimited.

. DEPARTMENT OF THE AIR FORCE A
___ AIR UNIVERSITY (ATC)

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

.8 02 023 127
• o -. .•, U - Oo *j , 4-.% . ..



AFIT/GCS/MA/82D-1

A SYNTAX-DIRECTED
PROGRAMMING ENVIRONMENT

FOR THE ADA PROGRAMMING LANGUAGE

THESIS

AFIT/GCS/MA/82D-1 Scott E. Ferguson > 1.
Capt USAF . f'

Approved for public release; distribution unlimited.



7 - M

AFIT/GCS/MA/82D-1

A SYNTAX-DIRECTED

PROGRAMMING ENVIRONMENT

FOR THE ADA PROGRAMMING LANGUAGE

THESIS

PRESENTED TO THE FACULTY OF THE SCHOOL OF ENGINEERING
OF THE AIR FORCE INSTITUTE OF TECHNOLOGY

IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

MASTERS OF SCIENCE IN COMPUTER ENGINEERING

.1.

by - ..

Scott E. Ferguson

Capt USAF

Graduate Computer Science .

6 December 1982

Approved for public release; distribution unlimited.

-p '; ;N . .:".:. ,:-::-.,.:, . ,,..c ..- ...- v . . .-..- 5 ".- " --. - -" ::



PREFACE

This document describes the design and implementation

of a programming support environment for the ADA programming

language based on a syntax-directed editor. The original

goal of the project was that of implementing only the

editor. As the project progressed, the desire to see a

complete environment based on the editor was overwhelming.

Of tremendous credit to the editor itself is the fact that

the compiler for a brief subset and the interpreter were

developed in a single weekend, demonstrating further the

benefits of the approach.

Much of this effort is based upon concepts and ideas

from research by Bruce J. MacLennan of the Naval

Postgraduate School and two of his former thesis stu dents,

William R. Shockley and Daniel P. Haddow, whose works are

cited in the bibliography.

I would like to thank my advisor, Captain Roie Black,

for directing me to this topic and for his stubborn refusal

to accept less than my best effort on the project. Thanks

are also due to my loving wife for her patience with a

madman during this ordeal, Ralph (the talking computer) for

all his support, and my parents, without which this project

would never have been accomplished.

Scott E. Ferguson

-L L PL k



Table of Contents0
1. INTRODUCTION ............ . . . . . ...... 1

2. LANGUAGE SYNTAX SPECIFICATION ...... ............ 5

3. PROGRAM TREE SYNTHESIS ......... . . ....... 9

3.1 Creating an ADA Program .. . . . .. . 9
3.2 Conditional Node Establishment ... . .. . 19
3.3 Insertion and Deletion .......... . . . 21
3.4 Cut and Paste Editing . .......... . . 22
3.5 Language Subsetting ....... . . .. . 23

4. DISPLAYING PROGRAM TREES . . .*. . . . . . . . . . . . 25

4.1 The Extended Cursor . . . . . . . . . . . . . . 25
4.2 Automatic Display Justification ... ........ .. 29
4.3 Modular Elision . ............ .. . . . 30

5. THE COMPILER . . . . . . . . . . . . . ........ 33

5.1 Program Tree Walk . . . . . . . ........ 33
5.2 Symbol Table . . . . . . . . . . ......... 35
5.3 Code Generation . . ... . . . . . . . . . 36
5.4 Error Handling . . . . . . . . ......... 36

6. THE DYNAMIC INTERPRETER/DEBUGGER ............... ... 38

7. THE PROGRAM LISTER . . . . . . . . . . . . . . . . .. 39

8. THE PROTOTYPE IMPLEMENTATION . . . ............ 40

8.1 System Organization . . .. ........... 40
8.2 Program Tree Access Package .......... . 41
8.3 Syntax Description Access Package . . . .... 43
8.4 Program Display Packages . . ............ 43 
8.5 Environment Tool Interfaces . . . . . . .... 45

9. THE ULTIMATE ENVIRONMENT ...... ............... .46

9.1 Incremental Compilation ............ . 46
9.2 Multitasked Environment ........ . . . . . 47
9.3 Semantic Specification .... .......... . . 47

10. CONCLUSIONS AND RECOMMENDATIONS ........... 49

10.1 Conclusions ..................... 49
10.2 Recommendations ..................... 50

BIBLIOGRAPHY ......... ...................... .54

lii



AMAPPENDIX I: META SYNTAX DESCRIPTION LANGUAGE . . . . . 55

qw APPENDIX II: META DEFINITION FOR ADA . . . . . . . . . . 57

APPENDIX III: META DEFINITION FOR ADAO . . . . . . . . . 75

APPENDIX IV: SYSTEM USERS MANUAL . . . . . . . . . . . . 79

ivi



List of Figures

Figure 2-1 An ADA assignment statement .. ........ . . 6
Figure 2-2 Parse tree for ADA assignment statement . . . 7
Figure 3-1 ADA program tree root . . . . . . . . . . 9
Figure 3-2 Program tree with compilation-units . . . 10
Figure 3-3 Display of program tree

with compilationunits . . . . . . . .. 11
Figure 3-4 Program tree with proc body alternative . . . 13
Figure 3-5 Program tree after applying

proc body production . . . . . . . . . 15
Figure 3-6 Display-after applying proc_body production 15
Figure 3-7 Procbody subtree after automatic

application of proc spec production . . . 17
Figure 3-8 Identifier subtree and display.. . . . ... 19
Figure 3-9 Identifier with first character . . . . ... 19
Figure 3-10 Identifier with second character . . . ... 20
Figure 3-11 Proc body subtree after deleting

the formal part . . . . . . . . . . ... 22
Figure 4-1 Point cursor display .... ............ .. 26
Figure 4-2 Displays using the extended cursor . . ... 27
Figure 4-3 Focus at decl node . . . . . . . . . ... 28
Figure 4-4 Focus at program component node .......... 28
Figure 4-5 Two nested procedures ................. 31
Figure 4-6 Isolation of inner procedure ... ........ .. 31
Figure 4-7 Outer procedure with suppressed

inner procedure . . . 32
Figure 5-1 Subroutine to process the ADA if'statement . 34
Figure 8-1 Prototype Environment Organization ..... 41

," .



AFIT/GCS/MA/82D-1

ABSTRACT*
This document describes the design and implementation

of a programming support environment for the ADA language

based on a syntax-directed editor and a program tree

structure. Though the prototype compiler is limited to a

small subset, the full ADA language is supported by the

remainder of the environment. Most of the environment is

driven by a language syntax description, and is therefore

capable of processing virtually any programming language.

The prototype syntax-directed environment demonstrates the

ability to reduce programmer idle time during development by
p.

eliminating parsing and lexical analysis in the compiler.

The program tree structure also allows for the development

of superior programming environment tools.

vi.vi °N

* ~ .* **-



INTRODMEUCTION

1.INTRODUCTION

WV ADA is the new computer programming language for

embedded computer systems within the Department of Defense

(DOD). Motivated by desires for increased productivity and

reduced cost, ADA is one of few computer languages ever

* developed with the programming support environment in mind.

* The DOD "Stoneman" document outlines requirements for an ADA

Programming Support Environment (APSE) to include many of

the conventional development tools (Ref 2). The objective

of this research is to present an alternative form of a

software development environment designed to significantly

reduce programmer idle time and increase productivity. This

increase in productivity should result in lower software

development costs for systems in the Air Force and the

Department of Defense.

A programming environment may be thought of as

providing a capability to develop program~s, implying

requirements for their creation, modification and

evaluation. This is traditionally accomplished by a set of

*tools: an editor produces a text program image; a compiler

generates machine code; a debugger provides a mechanism for

stepping through code execution to provide runtime

performance analysis and diagnostics for testing.

Modern enhancements call for an integrated collection

of tools, providing a smooth and often invisible transition

*from one tool to the next. The desired effect is to reduce



INTRODUCTION

the programmer idle time between a program change and the

observation Of' its impact upon program execution. It is

this quality of the BASIC programming language environment

that has made it popular with personal computer Users in the

microprocessor revolution, in spite of the poor reputation

the language itself has obtained among many in the computer

science community (Ref 41:14). Similar capabilities have

been seen in other interpreted languages such as FORTH, APL

and LISP. The most attractive environment currently

available for a block-structured language on a microcomputer

system is probably the UCSD Pascal System which attempts to

address the issues of' development time reduction and System

* integration.

In the traditional environment the program source text

file is the only data structure that remains from one

iteration of development to the next. Because of this, much

time is being wasted during compilation by reanalyzing

* portions Of the program which may not have been changed.

The programmer, of' course, Usually sits idle waiting for the

results of compilation. A more Useful data structure to

represent a program then becomes highly desirable, one which

will not only record the structure of the program (and

hopefully in a more efficient manner) but may also retain

desirable information, avoiding lenigthy and redundant

reanalysis.

2



INTRODUCTION

Creating and maintaining this new structure requires a

different sort of editor, since a text-editor is no longer

appropriate. Also, since the program's structure is now so

readily accessable, the editor might be built to ensure that

this structure is correct as it is being entered. Much of

this effort can be accomplished using time which, in single-

user or highly interactive environment, is often wasted by

the computer in idle loops during program entry waiting for

another typed character. Editors of this type are called

syntax-directed editors. The use of a syntax-directed

editor frees the compiler from the time-consuming task of

determining if a program's structure is correct.

The program data structure used by most syntax-directed

editors is that of a program tree. This tree becomes a

major focal point where analysis information may be retained

and exchanged between tools within the environment. Just

what a program tree looks like, how it is created and used,

is a major topic of this report.

The goal of this research effort is to design and

implement a programming language environment based upon a

syntax-directed editor to support the analysis of such an

environment and provide a foundation for future efforts.

The chosen target language is ADA, although a small subset

* was chosen as a more realistic goal within time constraints

and for the sake of demonstration. The system described was

~-' implemented on a Z80-based microcomputer system using the



INTRODUCTION

CP/M operating system. Software was developed in the C

programming language, chosen for its suitability to the

problem, compactness of code for a small machine and high-

level language portability.

Chapter 2 of this report provides some background on

the process of defining the structure of a language. How

such a language structure definition is used by the syntax-

directed editor during the synthesis of program trees is the

topic of Chapter 3. Next, Chapter 4~ addresses the problems

involved with generating a conventional text display from a

program tree. Chapters 5 through 7 describe the functions

* of the compiler, interpreter/debugger and program lister of

the prototype syntax-directed environment. The

implementation of these programming tools, including the

editor, is discusssed briefly in chapter 8. Chapter 9

outlines some more advanced concepts for improvement of the

system. Finally, chapter 10 presents the conclusions and

* recommendations resulting from the research effort.

4

*~~ b P4 - * . -* .7



LANGUAGE SYNTAX SPECIFICATION

2. LANGUAGE SYNTAX SPECIFICATION

A language's syntax (or grammar) precisely defines the

rules which govein the structure of programs written in the

language. Several means have been developed to specify a

language's syntax. One such means was proposed by Niklaus

Wirth and is a language in itself called Extended Backus-

Naur Form, or Extended BNF (Ref 14). Using Extended BNF,

the language designer describes the appearance of each

language construct in detail. (The language semantics, the

operational effect of a program's statements, are not

addressed by a syntax description.)

The ADA Reference Manual, as an example, uses a form of

Extended BNF to describe the ADA programming language (Ref

3). The ADA assignment statement is defined in a syntax

rule as:

assignment statement
variable name := expression;

The name of the language construct being defined appears

first. The symbol "::=" is read "is defined as", and

immediately precedes the definition. The definition

specifies the order of appearance of elements in the

language. The tokens ":=" and ";", called terminals, appear

in the program as they do in the definition.

"variable name" and "expression" are non-terminals

representing other language constructs with their own

definitions presented elsewhere in the syntax description.
a-

5 '*

a- 4. 4. ~ a !



LANGUAGE SYNTAX SPECIFICATION

In an ADA program, an assignment statement might appear

as in figure 2-1.

NEWX := OLDX*SCALEX;

Figure 2-1. An ADA assignment statement.

"NEWX" and "OLDX*SCALEX" are said to be produced from the

definitions of variable-name and expression, respectively.

For this reason, syntax rules are often called productions.

As a compiler analyzes a source program, it breaks it

down into its language construct components through a

process called parsing. This is often accompanied by the

construction of a parse tree for the program. A parse tree

records the hierarchical structure of a program. Each

terminal and non-terminal used in a production definition is

organized below the non-terminal being defined. A simple

parse tree fragment for the assignment statement above is

shown in figure 2-2.

The definitions for variable-name and expression are 'I

used to complete the structure of the parse tree below them.

The program tree data structure used by the syntax-directed

editor is very similar to the parse tree. The techniques

for constructing a program tree using a syntax description

* are the topic of the next chapter.
I.

26



LANGUAGE SYNTAX SPECIFICATION

Lassignment statementi

rvariable namel lexpression

Figure 2-2. Parse tree for ADA assignment statement.

Syntax description languages, such as Extended BNF,

have been used in the development of compilers. Compilers

are normally concerned with determining how a particular

program was constructed from the rules of the language

syntax. The syntax-directed editor, however, is concerned

,with the opposite task of constructing a program using

syntax rules. The syntax-directed editor requires

additional formatting information to construct the textual

image of the program from the program tree. Alsc. since the

syntax rules directly control program tree construction,

they should be kept simple and efficient. For these ,

reasons, Wirth's Extended BNF, was augmented to create META,

a syntax definition language used to describe a programming

language's syntax and its display format. META's form and

use will be presented during the discussion of program tree

synthesis in chapter 3. A syntax definition of META written

in META is provided in appendix I. META was greatly

* . influenced by the R-ARGOT syntax notation of another editor

(Ref 11).

.'"'



LANGUAGE SYNTAX SPECIFICATION

A META description for the full ADA programming

language, derived from the 1980 ADA reference manual (Ref

3), is given as appendix II and provides examples used

throughout this document.

8S

S.

-S

S'.

S

S.i

S°



PROGRAM TREE SYNTHESIS

3. PROGRAM TREE SYNTHESIS

This chapter describes the synthesis of a program tree

in the ADA programming language. The ADA syntax description

features and their effect upon program tree synthesis and

display are examined.

* 3.1 Creating an ADA Program Tree

The ADA syntax description is presented as a sequence

*of production rules. The first production rule defines the

*language goal symbol. The definition of this goal symbol

describes the structure of the entire language in terms of

other language terminals and non-terminals. The goal symbol

is therefore used to form the root of a new program tree.

* Since the ADA goal symbol is a compilation, the creation of

* a new ADA program tree begins with a compilation node as in

* figure 3-1. r

[cot ion

Figure 3-1. ADA program tree root.

The production definition of compilation is:

compilation-
compilation unit
@ compilatEion-unit}

The element being defined is named first, followed by an



tL

PROGRAM TREE SYNTHESIS

equals sign (11=11), the definition, and terminated with a

semicolon (";"). The "@" symbol, used for display control,

will be discussed later.

This is an example of a concatenation type of

production. The application of this production to the

compilation node results in the creation of a new child node

below the compilation node for each element in the

definition. The braces ("" and "1") surrounding the second

element indicate that it may appear zero or more times.

Such an element is called a repeater and will be

conditionally added to the tree to allow the user the option

of establishing it as part of the program, or removing it.

Until established, these tree nodes are ignored by

environment tools such as the compiler as if they did not

exist. The user may also insert additional nodes of this

type into the tree as desired.

The compilation production transforms the tree of

figure 3-1 to that of figure 3-2.

p.
I

i Ijcompilati n

I

compilation unit compilation uniti

Figure 3-2. Program tree with compilation units.

10

p, • '

I I0 .1

* 4 -



PROGRAM TREE SYNTHESIS

Figure 3-3. Display Of program tree
with compilation-units.

The program tree's display image at this point is shown

in figure 3-3. The image is generated from the program tree

frontier (those tree nodes on the border of the tree which

have no children) by examining the rules and display control

information. The interior nodes (all others) are not

directly displayed.

The newline display format control (11@1) in the

definition causes the second compilation-unit to be

displayed on a separate line. The angle brackets ("<(" and

1>11) are added to the display to avoid confusing the non-

terminal names with other elements of the program that may

appear later. This choice is arbitrary. Non-terminals

might just as easily be distinguished by some other means

such as highlighting, color change or alternate character

font where such capabilities exist. Note also the use of

braces in the display to reflect the conditional nature of

the second compilation unit.

The first compilation-unit node may now be examined for

potential synthesis operations. A compilation-unit is

defined as:

11g



PROGRAM TREE SYNTHESIS

compilation unit = <
proc_body
func body
pack_-body
proc-deal
func decl
pack-decl
with use clause
subuFit -
pragma >;

The angle brackets surrounding the definition designate this

production as an alternation. Each alternative must be a

single element. This production has nine alternatives, one

of which is to be selected by the user for synthesis into

the tree. The programmer might decide at this point if this

portion of the program should be, for instance, a procedure

body. The list of alternatives is displayed for the user to

*aid the selection process. The implemented prototype editor

requires the user to select an alternative by typing the

name of the alternative, with command completion to help

speed the selection. The use of a pick device (such as a

light pen or a mouse) would be quite efficient where such
I=

capabilities exist.

Assuming that a proc_body was selected, a new child is

created below the first compilation-unit of figure 3-2 to

record the selection and transform the program tree to that

shown in figure 3-4.

. . .

o1

I



PROGRAM TREE SYNTHESIS

Scompi ationl

(coompilation nit Ffcoo- ilaion u i7t
proc-bodyl

Figure 3-4. Program tree with proc_body alternative.

The next synthesis action is directed by the production

definition for procbody:

proc_body
procspec twist,

{ + decl1
{ + repspec I
+ 4 program-component I

@ "begin"
+ seq_ofstmts

[@ exceptions ! I
@ "end" [ ^ identifier ) "'"

As is to be expected, this production lays out a template of

what a procedure body is to look like. This is another

concatenation definition causing the creation of a tree node

below the proc_body node for each element in the

definition. The brackets ("t" and "J") surrounding an

element indicate that it may appear once or not at all.

Such an element is called an option and, like a repeater,

will be synthesized into the tree in a conditional manner to

allow the user the option of establishing it as part of the

• V. program, or removing it.

13

M..0"



PROGRAM TREE SYNTHESIS

Options and repeaters are conditional elements not

required to create a valid program in the language. In some

instances the synthesis of certain conditional elements may

only rarely be desired and it may be preferable to require

user action to insert them rather than to remove them, thus

reducing the number of editing keystrokes for the usual

case. The hide indicator (C"1") may be used to mark

conditional elements (such as exceptions or rep-spec in the

example) so they will not be automatically constructed in

Ithe tree. The user must manually insert such an element to

get one in the program and on the display.

The quoted strings are terminal language elements

typically Used to represent reserved words and delimiters in

the language. They stand for themselves and thus need not

be defined. A terminal string included unconditionally in a

concatenation list represents an invariant field which does

not record a decision in the tree synthesis process and

offers no potential for growth of the tree below it. Other

research has confirmed the intuitive suggestion that such

strings need not occupy space in the tree (Ref 11:61). In

an effort to reduce the size of the program tree, therefore,

such strings are not synthesized in the tree.

Applying the proc body production to the proc_body node

transforms the program tree of figure 3-4 to that of figure

3-5.

14



PROGRAM TREE SYNTHESIS

seq of tt
@V

Icompilatio°n-unitl Icompilati°n -u i

Iproc body p

Not thtte odtonlee ent repis e and eetins

Froc-specj FL{ program compnn ~ d.niirl,

I~de Z~ i seq..o73stmts

r'

bIegi

Figure 3-. Dispay re after applying

proc body production.

Note tht the onditinal el ms _pec nd xcpios,

their idegmrkes . isiredy atheymustpbin etd

the ser Th teminl srings n t productionaeas

15

*%*~*.*not present inthe tree.*. *.a.



PROGRAM TREE SYNTHESIS

The program tree's current display image is shown in

figure 3-6. The space marks ("^") in the definition cause a

space to be inserted in the program tree image. An

indentation mark ("+") preceeding an element indicates that

the image for that element (represented by its subtree) is

to be indented in the display. The optional identifier has

been distinguished by brackets. The presence of strings in

the display image of the program tree are reconstructed from

the production definition.

The enforcement of a standard layout format by syntax-

directed editors is common. The specification of format

controls in the syntax definition, as provided here, allows

some measure of local control for individual tastes.

Note that at this point the only user action has been

to select a procedure body for the program. All the

reserved words and semicolons have been properly placed by

the editor. In addition, the editor has included

information about the types and locations of language

constructs that remain to be supplied by the user to

complete the program correctly.

At this point only two nodes on the frontier of the

tree (proc_spec and seq_of-stmts) are unconditional. The

remainder are conditional nodes (options and repeaters) that Olt

will require some user action to establish them as areas of

the program to be -xpanded upon. If the definition of

either remaining unconditional node is an alternation, it

16

*,, .%*V*%i%.V :+ ,'%, % *. + % , ,. +' v, ; , .' . '.-+-+ .. + ,+,+ *. .. - .. .. ' ,.'.". +'



PROGRAM TREE SYNTHESIS

too will require user action in the form of a selection

before synthesis may continue using that node. The

definition of procspec:

proc_spec=
"procedure" ^ identifier [ formalpart I

is, however, a concatenation definition. No user action is

required to apply the proc_spec production to the tree. The

procspec node is not an option or repeater, so it must be

present to satisfy the syntax of the language. Therefore,

whenever a new unconditional node, such as this, with a

concatenation definition is synthesized into the tree, its

definition production may be automatically applied. In this

manner, the proc_spec production should be automatically

applied when the proc_body production is applied to produce

the subtree of figure 3-7.

1proc-body

-proc spec program componentl 1[identifier] 1 p

(de1 seq of stintsi

identifierl [formal_part]

Figure 3-7. Proc body subtree after automatic application
of procspec production.

17

° . , •° , ° - . .. • - . - . , . . , -.. .. • .



PROGRAM TREE SYNTHESIS

This application of concatenation productions upon

unconditional nodes is automatic whenever such a node is

added to the tree and continues until no such nodes remain.

Likewise, the production definition for identifier:

identifier:
'AZlaz' [ '091AZI _az' I

is also applied to identifier node under proc_spec.

The first element of the definition, 'AZiaz', is an

. example of the set construct which represents a compact

means of expressing an alternation consisting of single-

character strings. The set's alternatives may be single

characters or pairs of characters which specify an inclusive

range in the ASCII character set. The set 'AZlaz' is

syntactically equivalent to the alternation definition:

letter = <
IfAll "B" "IC" I"D" "Ell 'IF" "IG"I "H" "II" "J"f "K"I

" L "I I'M" "IN " "O f' "P " 'IQ " "IR " 'IS" 'IT" "lU " OfV "1
If "W"I "X" "Y" "IZ" flat' "b"s "c" "d" 'left 'If" 1"g"I

"h" " "i" jiq Ilk " t jf "Im" 'In" 'to" " p" "I qlI " r ""ls"l "t"l "lu" "v" "w"I "x" fly" "z" >;

Besides being obviously easier to use, the set saves a

program tree node by storing the user-selected character as

an attribute of the node. The letter production definition,

being an alternation definition, would require the selected

letter to be made a child of the letter node.

The identifier production applied to the identifier

node produces the subtree and display of figure 3-8.

18 III

' "s , ,. .- .,. . - - - - . .,; - - . .'-..--,.- . . -,. -. ,--- . ,-, . ***" " - "5k-,..-.,. **, :;



PROGRAM TREE SYNTHESIS

lidentifier

'AZ'az' {'09!AZ! az'}

I lAZoaz' 1O91AZI az'1

Figure 3-8. Identifier subtree and display.

The user selects (by typing) one character from the

set's valid range. This character then replaces the set

name in the display of the set node. Typing an 'X' for the

'AZ:az' set node, for example, would transforms the subtree

of figure 3-8 to that of figure 3-9.

identifierl

X{'091AZI laz'} e..

('09!AZ: z'} I

Figure 3-9. Identifier with first character.

3.2 Conditional Node Establishment

Conditional leaf nodes, such as the second set node in

the identifier above, require user interaction to establish

them into the tree. If the node is defined as a

concatenation or a string, typing the first cha'acter of its

19

. : % , , - W, '4', 4, '.4", "*"" """ I 'p 
" " • ' "

.. ..' " " "
' -

" 
" / ' "

" .. .... " " "' " " 
" % " " '

""
"% %

" 
' % .



PROGRAM TREE SYNTHESIS

displayed name will establish the node. If the node is

defined as an alternation or a set, this interaction is

implied by selecting an alternative or typing a character,

respectively, as previously described.

When established, the node's surrounding brackets or

braces are no longer displayed. If the conditional being

established is a repeater, a new, unestablished repeater of

the same type is automatically inserted after the node in

anticipation of the user's desire to later establish another

such node in the tree. In this manner, a stream of

characters may be input for an identifier or additional

statements supplied in a sequence of statements without 1.

having to manually insert each subsequent one.

Consider the identifier node from figure 3-9. Typing a
'Y' establishes the second set node and becomes the second

character of the identifier. A copy of the set repeater

node is automatically inserted into the tree for entering

the next character as shown in figure 3-10.

[ f ier71 4..

XY{'09!AZ',az'}

x {' 09;AZ _az'}j

Figure 3-10. Identifier with second character.

20



PROGRAM TREE SYNTHESIS

The unestablished repeater set node may be manually

deleted when no more characters are to be added to the

identifier.

3.3 Insertion and Deletion

The program tree may be modified during its synthesis

with insert and delete operations. The editing focus is the

current program tree node of interest to the user. The

entire subtree below the focus designates the entity being

considered by the editor for manipulation by the next

editing command. The delete operation causes the focus

subtree to be deleted from the program. If the focus is at

an option or repeater node, it represents an unnecessary

(i.e. conditional) node and may be simply deleted.

Otherwise the node is required by the syntactic definition

of its parent. In this case, the node is retained but all

those which have grown from it are deleted to wipe the

subtree clean and allow it to be rebuilt. To completely

delete such a node requires that its parent be deleted.

If the procedure body, previously shown in figure 3-7,

was to have no formal parameters, the focus would be moved

* to the ''formal _part" node and the delete operation would be

invoked, resulting in the subtree of figure 3-11.

The insert operation may be used to add an optional or

repeater node to the tree. The "formal-part" of the

procedure may be restored to its previous position by moving

the focus to the "identifier" node and performing an insert



PROGRAM TREE SYNTHESIS

procbodyl

Sproc.spec I  program componentli Cidentifier)]

(dec11[ seq ofstMts

identifierJ

Figure 3-11. Proc body subtree after deleting
the formal_part.

operation. The type of node to be inserted is determined

from the production definition of the parent (in this case

the "proc_spec" node) and the position of the focus with

respect to this definition. An option or repeater must be

capable of being inserted at that point. Only one occurance

of an optional node may be inserted into the tree at one

time, while a repeater may be inserted as many times as

desired. A similar operation is required to insert a node

in the tree to the left of the focus.

3.4 Cut and Paste Editing

"Cut and paste" operations can be easily applied to the

program tree structure. An entire subtree (such as that of

the proc body above) can be clipped or copied from the tree

and reattached in place of any procbody node in the tree.

This is a good example of how the syntax-directed editor

treats the program as program units rather than raw text.

22



PROGRAM TREE SYNTHESIS

3.5 Language Subsetting

The tree synthesis process, as just described, is

guided directly by the syntax description of the language.

Elements removed from the syntax description can no longer

be synthesized by the editor. Subsets of a language can be

created through a controlled removal of unwanted or unneeded

language features. Subsets may be useful at some

installations which, for example, wish to restrict the use

of certain language features possessing potentially

dangerous power. In the academic environment instructors

may want to disallow the use of certain programming

constructs until they are properly introduced. The dreaded

"goto" may also be a desirable target for omission from a

language.

Programs generated from the subset should be compilable

by the compiler for the entire language. This requirement

is assured, in a syntactic sense, if any program produced

from the subset grammar is producible from the original

grammar. This property determines the type of syntactic

elements, discussed below, that may be removed to produce a

subset grammar.

Conditional elements (options and repeaters) represent

syntactic units that may be omitted while still producing a

syntactically correct program. It follows that a
,%

conditional element of the language grammar may be removed

to produce a new grammar, and that any program produced from

23

.4



L _- WVV 1ir IVV AU WITO .61 TT I-1 T ! -.-.- .

PROGRAM TREE SYNTHESIS

the new grammar is producible from the original. Individual

alternatives within an alternation are likewise candidates

for removal since syntactically valid programs can be

created without chosing a particular alternative.

Alternative and conditional elements in a META language

description may be marked with a subset index indicator

which is a dollar-sign ("$") followed by a series of digits

("0" to "7"). Each digit indicates a subset within which
b.b

that element is "turned off". An element marked with subset I,

I'

index $03, for example, would be disallowed when using

subsets 0 or 3 of the language or both. In this manner up

to 256 grammar subsets may be supported by a single META

description.

The META definition for ADA presented in appendix II

has been reduced to a more manageable subset for the

implementation of a full prototype syntax-directed

programming language environment. The ADAO definition given

in appendix III is the $0 subset of the full ADA definition.

As an example of how subsetting works, the META definition

for a procedure call in ADA is:

proc call

name [ actual_param_part $0 ] ";"

.The "$0" subset removes parameters from procedures resulting

in the effective definition for ADAO being:

proc call =

name r

24V
: I



DIPAYN PROGRA TRE

4.DISPLAYING PROGRAM TREES

Because the program tree is a structure so different

from a text file, the syntax-directed editor is faced with

additional problems of how to display the program on the

screen and how to provide feedback to the user as to

movement of the focus within the tree. Certain advantages

also arise from the solutions to these problems as they are

discussed below.

4.1 The Extended Cursor

When editing programs using a text-based screen-

oriented editor, movement within the text is usually

accomplished with cursor control actions such as up, down,

left and right. Each movement places the cursor in a cell

ip where characters may be added or changed. The process works

well for text-editing since a character cell represents both 4

the unit of change and of movement. .

The program tree editor wants to work with program

components, however, not characters. This makes

conventional screen-relative cursor movement inappropriate

and makes the operation of mapping screen coordinates to the

tree structure too complex. Also, many elements in the

display of a program tree are not individually modifiable,

such as characters within reserved words. The user might

only be frustrated by being allowed to move to invariable

parts of the display.

25

U ~ &a ~ 4' **%* 5.* * 4N. ~



DISPLAYING PROGRAM TREES

Making the tree node the unit of movement for the

editor is accomplished by supplying a variety of commands to

move the focus from one node to another. The entire subtree

rooted at the focus designates the entity being considered

by the editor for manipulation by the next editing command.

The cursor should, therefore, designate the image which

represents the entire focus. The point cursor of display

terminals, however, actually points to only one character on

the screen. This results in undesirable ambiguity as in our

previous example of the identifier. If the focus is

currently on the identifier node, the point cursor lights on

the leftmost character of its image and the display looks

like figure 4-1.

'AZ az'('09!AZI laz'

Figure 4-1. Point cursor display.

But if the focus is moved down to the set 'AZaz', the

cursor remains fixed since it already designates the

leftmost character of the set display image.

The solution to this problem is the creation of an

extended cursor by highlighting the display image of the

focus subtree to clearly indicate the portion of the program

" being examined. Highlighting requires the terminal
io.

26

-)L



DISPLAYING PROGRAM TREES

capability to display text with reverse video, color change

or altered intensity. The extended cursor, appearing as an

enveloping box in figure 4-2, shows the focus at the

identifier node and after moving it down to the set node of

'AZ'az'.

'AZaz'{'O9:AZ1_1az'1}

I'AZlaz' ('09:AZ _ az'}

Figure 4-2. Displays using the extended cursor.

Still, implementors of other syntax-directed editors have

chosen to retain the point cursor and other text-based

editor characteristics, apparently in an attempt to appear

more conventional (Ref 12:15).

Focus movement to adjacent nodes such as parent, child

or sibling forms the primary type of movement within the

program tree. It is common for keys such as "left" and

"right" as found on most terminals to be interpreted as

movements to siblings left and right of the focus in the

program tree. Likewise, "up" and "down" translate to

movements to the parent and child of the focus. Since the

display format of the tree is dependent upon format controls

in the syntax description, it is quite possible that

27

.4



DISPLAYING PROGRAM TREES

siblings of the same parent will not lie on the same display

line. This results in focus movement on the screen which

may be inconsistent with the usual action with a text

editor. Figure 4-3 shows the procedure displayed with the

focus on the "decl" node. Using the "right" command moves

the focus down on the screen to its right sibling (the

programcomponent node), as shown in figure 4-4.

procedure <identifier>[formal_part] is
S{<decl>}

1

{<programcomponent>}
begin

<seqof stmts>
end [<identifier>];
{<compilation-unit>}

Figure 4-3. Focus at decl node.

procedure <identifier>Cformalpart] is

{<decl>}

{<program component>1

begin
<seq of stmts>

end [<identifier>);
{<compilation unit>}

Figure 4-4. Focus at program_component node.

285%"



,

DISPLAYING PROGRAM TREES

4.2 Automatic Display Justification

A terminal display screen imposes severe constraints as

to how much of a program tree may be displayed at one time.

Determining what portion of the tree to display is a problem

approached in many ways by different implementors of syntax-

directed editors. One such implementation offers a very

simple approach: allow the user to specify the subtree to

be displayed (Ref 10:8). The subtree displayed must be

cropped to fit the viewing surface. A depth limit is also

enforced, suppressing the display of portions of the tree

which are beyond a specified depth below the subtree root,

to make additional room on the screen. The selection of the

subtree to display and the depth limit are specified by the

user. Two enhancements to this concept have been adopted

for display image generation in the prototype syntax-

directed environment: automatic display justification and

modular subtree elision.

Constant repositioning of the subtree window by the

user is considered undesirable. An assumption that the user

is interested only in subtrees which include the focus

allows the editor to automatically select the subtree to be

displayed. The program subtree chosen for display on the

terminal screen, then, is that which contains the focus but

whose size does not exceed that of the screen. The focus,

of course, may contain a subtree whose image is arbitrarily

large. When even the focus is too large to display on the

screen, it is clipped to show as much as possible.

29



DISPLAYING PROGRAM TREES

4.3 Modular Elision

Using the depth limit approach creates the situation

where the focus node will not be displayed if it is below

the specified depth. Proposed here as an alternative to

depth limits is a different means of suppressing detail from

the display, called elision.

The display of any subtree in the prototype environment

may be suppressed upon command of the user. The image of

the "elided" subtree is replaced by an arbitrary string to

mark the elided material. This allows suppression of

undesirable detail from the display under user control.

When the focus is at or within an elided subtree, the

automatic display justification mechanism will consider no

larger subtree for display within the window. This results

in the somewhat opposite effect of suppressing the display

of all but the elided subtree.
4

In essence, the subtree elision concept may be thought

of as specifying levels of modularity to the program tree

display process. By marking a subtree for elision, the user

is interpreted as saying that it is to be displayed as a

modular unit. That when the focus is outside of the subtree

its contents are of no specific interest, and that when the

focus is inside the subtree only its contents are of

specific interest. As an example, consider a program

.:.. consisting of two very simple nested procedures where the

focus is at the inner procbody as in figure 4-5.

30



DISPLAYING PROGRAM TREES

S

procedure outer is

procedure inner is

begin
<seq_ofstmts>

end inner ;

bei<seq of -stints>

end outer;

Figure 4-5. Two nested procedures.

Eliding the inner procedure causes the display to

isolate upon it as in figure 4-6.

procedure inner is
begin

<seq_of stints>

end inner;

Figure 4-6. Isolation of inner procedure.

So long as the focus remains inside the inner procedure, the

display shows only that procedure, removing details from the

outer world. In figure 4.7, moving the focus out of the

inner procedure reveals how the inner procedure is

suppressed from the display.

31

] " ', , . , _,, .; ,-, Zj .;_.'Z~', -~f,:..',,',, ,, ;-,-,.'. ,.-, _.. -..- . ,... ., ..... ,.'.



DISPLAYING PROGRAM TREES

procedure is

begi3.n
<seq of -stints>

end outer;

Figure 4.7 Outer procedure with suppressed
inner procedure.

The user remains aware that something is there, but is

unconcerned with the details of its construction. It is

suggested that the modular elision capability graphically

supports sound programming techniques such as modular

programming and stepwise refinement.

Program tree synthesis and display, the topic of the

previous two chapters, are the primary functions of the

syntax-directed editor. The following chapters briefly

describe the other program development tools of the syntax-

directed environment.

432



1W ~ TH COMPILERA~X ~1~(~ ~qL~I ~V W u ~ ~ \i' ~ ' '7 - I.-

5.THE COMPILER

The compiler function of the prototype syntax-directed

programming language environment is the only function which

is language dependent. No means have been provided as yet

to specify semantic action in the META syntax description to

support program tree analysis and code generation. The

compiler must be coded by hand to perform these tasks. The

prototype compiler for the ADAO subset merely walks the tree

building a symbol table and generating code for a pseudo-

machine.

5.1 Program Tree Walk

The structure and assured syntactic correctness of the

program tree completely eliminate the need for a parser in

the conventional sense. Walking the tree provides access to

the syntactic elements of the program. The structure of the

compler code to walk the tree directly models th

hierarchical structure of the language syntax description.

Each non-terminal in the syntax description maps to a

subroutine whose argument is the root node of a subtree of

the non-terminal's type. The routines's purpose is to

process and validate the structure of the subtree. Thus a

call to a "compilation" subroutine with an argument of the

program tree root (compilation) node initiates the entire

process of compiling an ADA program. Each subroutine called

processes its own children in turn by calling other

subroutines for non-terminals or observing strings and sets

33



THE COMPILER

for their semantic value. As an example, the tree structure

for the ADA if stmt, syntactically defined as:

if strut =
"if" expression "then"

+ seq_of stmts
@ @ elsif part }

[ @ else Tart I
@ "end" w 1 " fi" ii'"

is processed by a subroutine like the one in figure 5-1.

procedure IF STMT(node : tree node);
var child : tree node;

begin
child := first child(node);
EXPRESSION(child);
child := right sibling(child);
SEQ OF STMTS(ciild);
child-= right sibling(child);
while (nodetype(child) = "elsif part")

begin
ELSIF PART(child);
child :: right sibling(child);

end;
if (node type(child) = "elsepart").=

ELSEPART(child);
end;

P.

Figure 5-1. Subroutine to process the ADA if statement.

Processing for the concatenation definition of the

if stint maps to a series of statements to analyze each child

node in turn. The terminal strings are of no concern here

since they are not synthesized in the tree. The expression

and seqof stmts are non-terminals processed by their own

subroutines. The elsifpart repeater nodes are processed in

a while-loop for as many such nodes as may be in the if

34



THE COMPILER

statement. The optional else_part is processed in an if

statement predicated upon whether or not one such node is

present. Any unestablished repeaters or options are

ignored.

An alternation definition is processed with a case

statement (or switch) based on the type of its single child.

This child, which recorded the alternative chosen, is used

to determine the type of program construct which is formed

in the tree below it. If it has no child, an incomplete

program fragment is detected as an error.

Since the code to perform the tree walk as just

described maps so directly to the syntax description, it

could be automatically generated from the syntax description

file in a straightforward manner. Techniques for this have

been previously developed to automatically generate parsers

for compilers (Ref 9). The tree walk code so developed

would form a shell to be augmented with the necessary

analysis and code generation routines for the language.

An additional benefit of the tree structure is that the

program need not be accessed in a strict linear fashion, as

has been described. The entire tree is available for

analysis throughout the compilation process.

5.2 Symbol Table

The symbol table used in the prototype compiler

* references identifiers with a pointer to an identifier node

35



THE COMPILER

in the tree. The individual characters are distributed as

children of the identifier node according to the syntax

definition for identifier. A subsequent identifier

encountered in the program tree may be compared to those in

the symbol table by pattern matching identifier subtrees.

This leaves the storage for symbols in the trees.

5.3 Code Generation

Code generated by the prototype compiler is for a

pseudo-machine similar to that Used by Wirth in his Pascal

subset compiler, PL/O (Ref 13). Code is generated during

the tree walk. Each instruction is tagged with a pointer to

the tree node which is to be considered responsible for its 0

generation. This pointer is used by the interpreter,

discussed later.

5.4 Error Handling

The syntax-directed editor insures only that programs

are free from syntactic errors as specified by the language

grammar. Semantic errors, such as encountering an

ientifier that is either undeclared or of the wrong type,

must be handled by the compiler.

The error recovery function is nearly eliminated in the

compiler. Since nearly all errors are semantic in nature,

recovery in the prototype involves possibly patching up code

generation and resuming compilation at some arbitrary point

later in the tree. An undeclared variable encountered in an

expression, for example, causes an error report with an

36



THE COMPILER

instruction generated to load a constant 0 rather than the

variable value. The remainder of the expression may

processed normally.

The handling of errors will at some point require the

user to make program modifications. The compiler aids this

process by marking faulted nodes in the program tree so the

editor can be automatically directed to them. The user may

repair them quickly and return to compilation.

43



THE~~~~~ DYNMI INERTR/EGE

6.THE DYNAMIC INTERPRETER/DEBUGGER

The interpreter for the prototype syntax-directed

environment is perhaps the most exciting component of the

environment. The interpreter provides a visual form of

trace for program execution. Though only partially

implemented with very minimal debugging facilities, it is

representative of the kind of programming development tools 7

that can be developed to draw upon the potential power of

the program tree structure.

The interpreter follows code generation by the

compiler. Each generated instruction is tagged with a

pointer to the program tree node considered responsible for

its generation. This node becomes the highlighted focus for

the program tree display as each instruction is executed to

show the programmer where execution is taking place. The

focus moves across the program image as instructions are

executed to dynamically trace out program execution.

* The topmost elements of the runtime stack are displayed

after each instruction is executed, along with the next

instruction to be executed. More advanced debugging

facilities, such as those described in previous research for

use in the ADA environment (Ref 6), should eventually be

incorporated into the interpreter/debugger.

38



THE PROGRAM LISTER

7. THE PROGRAM LISTER

The program lister produces a text format source file

from the program tree for use in generating hardcopy

listings or for transfer to a text-based environment. The

process is virtually identical to that of generating a

program tree display image, but without a line limit

restriction. The ability to pretty-print a program, a topic

of considerable interest in the literature, is inherent in

the structure and display of the program tree.

for

The resulting text file is intended to represent a

program which could be presented to a conventional compiler.

The lister, therefore, omits unestablished conditional nodes

(since these are ignored by the compiler) and does not

suppress the display of elided subtrees. Options might

later be added to alter these defaults and to selectively

list portions of the program, perhaps using the elision

facility. The lister is envisioned as a tool which should

also eventually generate cross-referencing information for

programs.

39

9%

39



THE PROTOTYPE IMPLEMENTATION

8. THE PROTOTYPE IMPLEMENTATION

The prototype syntax-directed editing environment was

implementated on a Heathkit H89 microcomputer system with a

four megahertz Z80 processor, 64 kilobytes of memory and 600

kilobytes of floppy-disc storage. The environment has also

been successfully demonstrated on an S-100 based

microcomputer system with a ten megabyte Winchester disc.

Software was developed for the CP/M operating system using

the C programming language. A brief discussion of the

implementation highlights follows.

8.1 System Organization

The environment is organized with the program tree

storage at the center, as depicted in figure 8-1.

The syntax directed editor is the primary user

interface of the environment. Control is transferred to the

compiler, interpreter or lister upon command from the

editor. The META preprocessor condenses a textual META

syntax definition into a form more easily accessed by

environment tools. The terminal configuration program

records pertinent terminal characteristics in a terminal

description. Interfaces within the environment are

described briefly following a discussion of the global

software packages providing access to the program tree

structure and syntax description structure and routines for

program display generation.

40



THE PROTOTYPE IMPLEMENTATION

SYNTAX-
DIRECTED LISTER TX
EDITOR

TERMINAL PROGRAM SNA
DESCRIPTION TREES **DEFINITION

CONFIGURE DEBUGGER COMPILERSRE

Figure 8-1. Prototype Environment Organization.

Four global software packages provide access to system

* data structures and display mechanisms for all the tools in

the environment. The use of these packages greatly

simplifies the creation of new tools within the environment.

8.2 Program Tree Access Package

The program tree access package provides any tool

requiring access to program trees with primitives for most

types of required tree operations including: attribute

41



THE PROTOTYPE IMPLEMENTATION

interrogation and modification, traversal, node creation and

V90%,deletion, insertion and deletion, and subtree copying.

Significant problems are encountered on a small system

when trying to manipulate a program tree too large to reside

in available main memory. Virtual memory capabilities have

been emulated to allow tree fragments to be loaded and

unloaded from disc as required. Tree nodes are organized in

a linear fashion in a file with pointers from node to node

being relative from the start of the file. Relative

pointers are used to ease the problems of moving absolute

pointers around in memory. The program tree is divided into

blocks to be swapped in and out on a least-recently-used

basis. Machines providing virtual memory capabilities in

hardware could significantly speed up tree access.

Each tree node Occupies eight bytes. On the average, aA

program tree file will be up to eight times larger than the

corresponding text-based program file. This program storage

overhead is the tradeoff made to provide the capabilities of

the syntax-directed environment. The decreasing price of

secondary storage makes this overhead of less concern than

in the past.

Accompanying each program tree a file information block

which carries configuration management information along

with areas for data exchange between environment tools and

roll the name of the syntax description with which the program

has been developed.

~42



THE PROTOTYPE IMPLEMENTATION

8.3 Syntax Description Access Package

A syntax description access package provides tools in

the environment with primitives to access syntax

descriptions for use in program display formatting and the

analysis of syntactic content. The syntactic type of a

program tree node and its relative position in a syntactic

definition is represented by a pointer from the tree node

into the syntax description.

The syntax description used by the environment is

actually a condensed data structure produced from a META

language definition by a preprocessor. The META

preprocessor accepts a textual language definition,

validates its format and contents, and creates a syntax

description file for use in the environment.

8.4 Program Display Packages

The design strategy implemented in the prototype

environment divides the processes of program image

generation and display update into two distinct packages for

use as general purpose environment utilities. The image

generation package creates a desired display image of the

program subtree in memory, completely independent of the

editing functions and tree transformations taking place.

This package also performs the automatic display

justification and elision functions described in chapter 4,

as well as determining the focus area to be highlighted on

:the display screen.

43



THE PROTOTYPE IMPLEMENTATION

The display update package performs screen functions to

transform the current display image into the desired display

image. The prototype system implements only a modest form

or display update optimizations. More optimal display

update algorithms, such as used in the CURSES package for

UNIX (Ref 1), are readily available on other systems and

should be easy to incorporate.

The display update process uses terminal-dependent

codes for such functions as cursor positioning, erase to end

of line and highlighting (reverse video). These codes are

supplied to the environment in the form of a terminal

description file created by a terminal configuration program

in an interactive session with the user. The terminal

description file also maintains screen height and width

information and the terminal codes used to represent the

various commands of the editor so that function keys or

control keys available to the terminal may be used. The

terminal configuration program allows the system to be used

with most modern display terminals.

In order to remain an independent utility, the design

of the program tree display package requires a regeneration

of the entire display image after any change to the tri~si.

This results in a gradual reduction in response time as the

size of the display subtree increases. A more efficient

* means of display image generation might later improve system

performance .

4J4



F kNJ~,m.. "..r "5 -E 5 . '~"5x~ A ~ "r. ~ " ~ ~ M~Z., ~p~q ~g-~m-, A ~ ., ,AM ,r, . ,. -

THE PROTOTYPE IMPLEMENTATION

* 8.5 Environment Tool Interfaces

* Use of the environment ordinarily begins with the

editor. The editor when invoked is given the name of the

program tree file to be edited. If this is a new file to be

created, the name of the programming language must also be

supplied. This directs the editor to the syntax description

file for use in program tree synthesis.

At any time during the editing session the interpreter,

compiler or lister may be invoked by command from the

editor. These separate programs are loaded and given

control after the program tree has been saved. The name of

*the language-dependent compiler to be loaded is

automatically derived from the program tree's associated

programming language name.

Errors discovered during processing by the compiler are

marked for easy access by the editor. An array of tree node

pointers is kept for this purpose in the program tree file's

information block. The editing focus is automatically moved

to the first error marker when control returns to the

-editor. Other error markers may also be examined with a

* simple editor command.

Nearly 7000 lines of C source code were generated

during development of the syntax-directed environment. The

syntax-directed editor program is approximately 214 kilobytes

long; the compiler is nearly 28 kilobytes long.

45 '



THE ULTIMATE ENVIRONMENT

9. THE ULTIMATE ENVIRONMENT

9.1 Incremental Compilation

The ultimate programming language environment should

provide tools which will reduce the time spent in the

development cycle between program modification and testing.

The prototype syntax-directed environment attempts to do

this by eliminating parsing analysis in the compiler and

providing smooth interfaces between development tools.

The recompilation of program fragments which are

unchanged from one iteration in the development cycle to the

next wastes significant programmer time. Incremental

compilation is one process by which such redundant

compil1ations are avoided. A code data structure must be

included which maps to the program tree so that the results

of the compilation process may be retained. Changes or

additions to program tree nodes are marked to trigger a

later reexamination of their associated code fragments by

the compiler. Some unchanged fragments within the scope of

* other changedi fragments may also require reexamination. A

type change in the declaration of a variable, for instance,

.5might effect code generated elsewhere to access the

variable. Since large portions of a program tree often

remain unchanged, the time savings brought about by

incremental compilation are anticipated to be significant.

Such an incremental compilation environment has been

successfully based on a syntax-directed editor system at

Carnegie-Mellon University (Ref5)

~46



*-r -. WWA. wV WZ -w WE W- W- IF- a-- - C -

THE ULTIMATE ENVIRONMENT

9.2 Multitasked Environment

The use of multitasking, which is supported by the ADA

language, to support the programming environment is an

attractive means of reducing unproductive time in the

development cycle. The incremental compiler, as a separate

but parallel task to the editor, could be triggered to

recompile program fragments as they are changed. The

interpreter/debugger might also be invoked to execute and

debug code segments at any time during the editing process.

At this point all the tools in the environment actually

merge into a single program development facility. The

development cycle of program modification and testing

collapses into a process where these tasks occur side by

side. In an environment where these multiple tasks are

handled by multiple processors, the user response time can

dbe maintained at reasonable levels. As the capabilities of

microprocessors increase and their prices decrease, such an

environment becomes feasible and very attractive for

individual programmer workstations and personal computers.

9.3 Semantic Specification

Means for specifying language semantics as an extension

to a language syntax description have been developed

elsewhere as a step toward the automatic generation of

compilers from language descriptions (Ref 8). Such

extensions might be applied to META grammar descriptions to

Cf.. provide the syntax-directed editor with enough information

47



THE ULTIMATE ENVIRONMENT

to disallow or flag semantic errors in the program tree.

The specification of a language's code generation

requirements should also be considered.

The analysis of semantic properties by the syntax-

directed editor is by no means a trivial task. A single

program change may affect the semantic validity of any

number of other program fragments. Consider, for instance,

the removal of a variable's declaration and the impact upon

-all its references. Such considerations forced this topic

beyond the scope of this research.

CO-S

44



.If ~CO CL SI N AN RECOMMENDATIONS r -. '. ~..a~ .r ..- ~ .r'ra -~~. -.-

1CONCLUSIONS AND RECOMMENDATIONS

10.1 Conclusions

Several important advantages have been demonstrated by

the prototype syntax-directed programming language

environment. The syntactically correct program tree

structure produced by the editor eliminates the need for a

parser within the compiler. This reduces compilation time

and makes compilers simpler and easier to build. Programmer

time need no longer be wasted repairing syntax errors

detected by the compiler. More effort can be devoted to

improving program logic and design, with less effort spent

struggling with language syntax.

The interpreter/debugger demonstrates how the program

40 tree structure can be associated with other structures, such

as code generated for the program, to provide powerful

features, such as program display feedback to the user

during execution. The development of a tool with these

capabilities in a text-based environment is considerably

more difficult.

Although the syntax-directed environment has been

developed for the ADA language, any programming language may

be incorporated. To process any additional language 4

requires a compiler for the language and a META syntax

description to define the language for the environment. All

other tools are language independent, requiring no

modification.

±49



CONCLUSIONS AND RECOMMENDATIONS

The entire prototype environment was implemented on a

microcomputer system, indicating that complete syntax-

directed program development facilities can be provided at

relatively low cost. The introduction of large capacity

mass storage and 16-bit microprocessor technology to

microcomputers makes single-user programmer workstations

quite attractive and affordable.

Syntax-directed editors should also have a significant

impact upon education. Teachers of basic programming may

place less emphasis on language syntax and more emphasis on

sound programming techniques. The language subsetting

feature of the environment may be used to introduce students

to subsets of increasing size until the entire language has

been presented.

10.2 Recommendations

Extensions to this research effort might proceed in

many directions. The previous chapter has outlined several

advanced concepts for major design extension of the

environment. The introduction of incremental compilation is

perhaps the best way of improving environment performance.

Augmenting the META language with the ability to specify IN

language semantics would allow for a much more useful editor

and provide for automatic compiler generation facilities.4•

Moving the environment to a larger or more powerful

K- . machine might improve performance characteristics such as

response time. The incorporation of multi-tasking to

50



CONCLUSIONS AND RECOMMENDATIONS

enhance the environment might best accomplished on the Intel

iAPX-432 system or the VAX/780.

Another class of extensions to the prototype

environment involve less drastic changes to the design of

the existing implementation. The expansion of the prototype

compiler toward a full ADA capability is of prime interest

for use in teaching ADA and developing a complete ADA

environment. Expansion of the environment debugging

*capabilities should accompany this effort to provide

adequate support for more powerful language features.

As the editor is used, ways of improving the User

* interface will surely surface. New types of commands may be

desirable and additional feedback in the form of help menus

*may prove useful. Modifications might also include device-

independent support for advanced terminal capabilites such

as the use of high-resolution graphics and color and input

devices such as light pens or data tablets.

Support for additional languages, other than ADA, might

also be of interest. Compiler development for such

languages as PASCAL and C should be significantly simpler

for the syntax-directed environment than for a text-based

environment. Required META descriptions may be derived from

other existing syntax definitions for these languages.

The requirements for ADA support environments specifies

* *~gthat tools be written in ADA where possible (Ref 2:15). The

51



CONCLUSIONS AND RECOMMENDATIONS

syntax-directed programming language environment should be

translated into ADA as working ADA compilers become

available. The software has been developed in modules

intended to support the ADA packaging concept in

anticipation of the need for such translation. Some

attention should also be paid to the DOD requirements for

configuration management and control for ADA support

environments (Ref 2).

A standard intermediate representation form, called

DIANA, has been developed for ADA programs (Ref 7). An

additional tool could be built for the environment to

produce DIANA notation almost directly from the program tree

representation (and '. ce versa) for communication with other

CP ADA environments.

Where the need arises to exchange programs with text-

based environments, an additional tool will be required to

produce program trees from a text image. Such a tool might

be generated automatically from a syntax description in a

manner similar to the language development aids YACC and LEX

(Ref 9). The program lister of the syntax-directed

environment may be Used to perform the opposite task of

generating text image files from a program tree.

Syntax-directed editors and environments surrounding

them are finally being developed to offload mundane

dW programmer tasks to the computer. It seems ironic that

programmers, bound by inadequate and cumbersome development

52



CONCLUSIONS AND RECOMMENDATIONS

facilities, are among the last element Of society to be

liberated by computers.

45



BIBLIOGRAPHY

1. Arnold, Kenneth C. Screen Updating and Cursor Movement
Optimization: A Library Package Computer Science
Division, University Of California, Berkeley.

2. Department of Defense. Re uirements for ADA Programming
Support Environments. Washington, . -I0.'

3. Department of Defense. Reference Manual for the Ada
Programming Language. Washington, D.C., 198- -

4. Dijkstra, Edsger W. "How Do We Tell Truths That Might
Hurt?" ACM Sigplan Notices, 17 (5): 13-15, (May 1982).

5. Feiler, Peter H. and Raul Medina-Mora. An Incremental
Programming Envirinment. Carnegie-MeTTon Univ.,
Pittsburgh, PA. Dept. of Computer Science, April 1980.

6. Gaudino, Richard L. Analysis and Design of Interactive
Debugging for the ADA Programming Support-Environment.
Masters Thes-s, Ai-r Force Institute of Technology,

November 1981.

7. Goos, G. and Wm. A. Wulf. Diana Reference Manual.
Institute Fuer Informatik II, Marc-1981.

8. Holt, R.C. "An Introduction to S/SL: Syntax/Semantic
Language," ACM Transactions on Programming Languages and
Systems, 4 (2T-:149," (Apr 19T2.

9. Johnson, S. C. and M. E. Lesk. "Language Development
Tools," The Bell System Technical Journal, 57 (6) Part
2: 2155-217- -5 (july-August 1978).

10. MacLennan, Bruce J. The Automatic Generation of Syntax-
Directed Editors. Nava Postgraduate School, Monterey,
CA., 1981.

11. Shockley, William R. and Daniel P. Haddow. A Conceptual
Framework for Grammar Driven Snthesis. Masters Thesis,
Naval Postjr~duate School, Monterey, CA., 1981.

12. Teitelbaum, Tim, et. al. "The Why and Wherefore of the
Cornell Program Synthesizer," Proceedings of the ACM
SIGPLAN SIGOA Symposium on Text Manipulation. (J---e

13. Wirth, Nicklaus. Algorithms + Data Structures
Programs. Prentice-Hall, 1976.

i4. Wirth, Nicklaus. "What Can We Do About the Unnecessary
Diversity of Notation for Syntactic Definitions?"
Communications of the ACM, 20 (11): 823 (November 1977).

,-.v - - -.- .- --'-., - - - %.. . . .. * -'- -' , ., *% -, . . . . . Q.,- ,%



17 I V7T - -

META SYNTAX DESCRIPTION LANGUAGE

APPENDIX I. META SYNTAX DESCRIPTION LANGUAGE

The following is a definition of the META syntax

description language, given in META.

syntax =
rule
( @ rule }

rule =
identifier

+ definition "'",

identifier =
'AZiaz' ( '09'AZ _ laz' }

definition = <
alternation
concatenation >;

alternation =
"<" element { element } A ">"-

concatenation=
term term } ;

element -

primary [ I "!" ] [ A index ]

term = <
option
repeater
primary >;

primary
[ '+I@V' 2 ] factor [ ,A, ]

index:
"$" 1 '07' 1

option:
"[" element "]"

repeater =
"{" element "}"

factor <
identifier
string

•b .set >;

55



META SYNTAX DESCRIPTION LANGUAGE

string

set
Spair (pairs

pair:

pairs I

pairir

56

f~* w.. * . * a . . . . . . .



META DESCRIPTION FOR ADA

APPENDIX II. META DESCRIPTION FOR ADA

The following is a description of the ADA programming

language, written in META, as adapted from the 1980 ADA

Reference Manual.

compilation =
compilation unit
{ @ compilation unit $0 }

compilation unit = <
proc body
func body $0
pack body $0
proc decl $0
func decl $0
pack-decl $0
with-use clause $0
subunit $0
pragma $0 >;

procbody
procspec ^ "is"

{ + decl }
{ + repspec I $0 }
{ + program-component }

@ "begin"
+ seq of stints

[ @ exceptions !-so 
@ "end" [ A identifier ] "',

func body =
func-spec ^ "is"

+ decl}
{ + rep spec ! }
{ + programcomponent }

@ "begin"
+ seq of stmts

@ exceptions !-3
* @ "end" [ A designator 1 ";"

packbody =
"package" A "body" A identifier "is"

{ + decl }
• . { + rep spec ! I

{ + program-component }
@ @ body part I

@ "end" TA identifier ] "'

, P

57 57

-. , ~ nm ~ . .* -. m~~m *1 ** ,--m. .=I,. ,



META DESCRIPTION FOR ADA

proc decl = <
proc_spec semi
genericproc_decl
generic_procinstant >;

func decl = <
funcspec semi
generic func decl
generic func-instant >;

packdecl <
pack.spec
generic_pack_deci
generic_packinstant >;

with use clause =
with clause [ useclause

subunit
"separate" "(" name " A subunit-body

pragna
"pragma" A identifier [ actual param part ] "'"

proc_spec
"procedure" A identifier [ formal_part $0 ]

decl = <(

object decl
type dial $0
subtype decl $0
number Uecl $0
func decl $0
proc-decl $0
pack-decl $0
task-decl $0
exception decl $0
rename_object $0
rename exception $0
renameproc $0
rename func $0
renamepack $0
rename task $0
use clause $0
pragma $0 >;

rep spec = <
length spec
enum type rep
recordtype__rep
address_spec >;

58
.- .o.... ... .&,**.J*



META DESCRIPTION FOR ADA

program component : <
OI procbody

func-body $0
pack body $0
taskbody $0
proc stub $0
func-stub $0
pack-stub $0
task-stub $0
pack decl $0
task-decl $0 >;

seqof-stnts
strut
[ @ stint }

exceptions =
"exception"

{ + exception handler }

identifier
'AZlaz' { '09AZIlaz' }

funcspec z
"function" ' designator [ formalpart]

"return" subtype indication

designator = <
identifier
operatorsymbol >;

bodypart =
"begin"

+ seq of struts
@ @ exceptions !-;

proc_specsemi
proc_spec ",'";

generic proc decl
"gener ic"

+ + generic formal_param }
@ proc_spec ";"

generic_proc_instant
"procedure" identifier ^ "is"

A generic instant "'"

funcspec semi =
f'uncspec ";",;

59



META DESCRIPTION FOR ADA

genericfunc decl
"generic"

{ + genericformal param }
@ funcspec ";"

generic func instant
"function" designator "is"

generic-instant ";"1

packspec
"package" ^ identifier "is"

( + decl I
[@ private part

@ "end" [ -identifier 2 "'"

generic_packdecl r
"generic"

f + genericformal_param }
@ pack spec

generic pack instant
"package" ^ identifier "is" generic instant ";";

with clause =
"with" ^ name [ names } "'"

use-clause =
"use" ^ name { names } ""

name =<
identifier
indexed component $0
selected component $0
slice $0
attribute $0
func call $0
operator_symbol $0 >;

subunitbody = <
proc_body
func body
pack-body
task body >;

actual_param part I
"(" param assoc { paramassocs * ")" ;

formal_part =
"(" param decl { param decls } ")"

object decl I
id list ":" [ "constant" ] object type

S- ^initiaT ";" ;

60



META DESCRIPTION FOR ADA

type decl -
"type" ^ identifier [ discrim part ! ]

[ ^type body ";"

subtypedecl =
"subtype" A identifier ^ "is" A

subtype indication "f;,

number decl
id list "'". ^ "constan.t" ^ initial "'"

task decl
"task" [ "type" ] A identifier [ A task-def I

exception decl
id list "'". - "exception" "',

renameobject
identifier ":" name " "renames" name ";"

rename exception =
identifier ":" "exception" "renames" name "'""

. rename_proc =
procspec "renames" name ","

rename_func =

func spec A "renames" A name ";"

rename_pack
"package" A identifier A "renames" A name "'"

rename-task
"task" A identifier A "renames" A name "'"

length spec =

"for" A attribute ^ "use" ^ expression "" "

enum type rep =
f"or" name A "use" ^ aggregate ";"

record type rep =
"for" A name A "use"

+ recordrep

address spec :
"for" A name "use" A "at" A simple_exp ",;..

61

'S.



,A ... t.. A -... o, . . - S

META DESCRIPTION FOR ADA

task body =
"task" A "body" identifier "is"

+ + decl }
{ + repspec ! }
+ program component }

@ "begin"
+ seq_of stnts

@ @ exceptions !-]
@ "end" [ identifier ] ";"

proc stub =
proc_spec A "is" "separate" "";

func stub =
funcspec A "is" "separate" ","

pack stub
"package" "body" identifier "is"

"separate" "'"

task-stub
"task" ^ "body" identifier ^ "is"

"separate" ";"

s t rut
{ label ! $0 } simple stmt

exception handler =
%[ "When"l ^ exception choice { exception choices }

4 seqof stnts

subtype indication -

name [ ^ constraint $0 ]

- operator symbol =
c6harstring

generic formal param =<
param decl semi
generTo proc
generic func
generic type >;

generic instant =
"new" name C genericassocs ]

private part =

"private"
{ + decl }

.. (+ rep spec I};

names
", name

62

,'. *



META DESCRIPTION FOR ADA

4 indexedcomponent
name "(" expression { expressions } ")"

selected component
name "." component

slice =
name "(" discrete-range "")t;

attribute =
name "'" identifier

func call =
name E actual_param_part ;

param-assoc
[ param link A ] expression

param_assocs"" A paramassoc

param decl =
id list ":" [ "in" ] £ "out" 2

-- A subtype indication [ A initial 2 ;

param.decls
to " ' paramdecl

id list -

identifier [ identifiers }

objecttype = <
subtype indication
array_typedef $0 >;

initial -

"1:=" ^expression

discrimpart
"(" discrim decl { discrim decls } ")" ;

type_body t
"is" ^ type_def;

task def =
" is"

(+ entry_decl }
{+ rep spec! }

@ "end" [ identifier 2

63 'I

'i" " ? ' " "'". " " . " '" " """ " . """" '," ":''", "'". ""'"i" "'" "" '" '" " ... ' "'/ :" * """



META DESCRIPTION FOR ADA

expression = <
relation
and comp
or comp
and then comp $0
or_else comp $0
xor comp $0 >;

aggregate
"'(" componentassoc ( component assocs } ")"

recordrep z
"record" alignclause ]

+ name-location
@ "end" "record" i ; i

simpleexp =
[ unary_operator ! ] term { terms }

label =

"<<" identifier ">>"

simple strut = <

assignmentstmt
if strmt
loop_stmt
proc call
case stnt $0
block $0
exit stmt $0
return stmt $0
goto strut $0
entrycall $0
delay stmt $0
abort stnt $0
raise-stmt $0
code stmt $0
accept-stmt $0
selective-wait $0
cond entry_call $0
timed entry call $0
null itmt $7 >;

exceptionchoice = <
name
"others" >;

exception-choices =

exception choice

642 1.

f.i



META DESCRIPTION FOR ADA

constraint = <
range constraint
float-pt constraint
fixed ptconstraint
index cons3traint
di3crlm_constraint >;

char-string

param-deci semi
parFam_deci "1;"

generic_proc = prcse E
"with" po_se generic~is '"

generic-func =
"with" func spec £ generic_ is)";;

generic_type
"type" identifier £ discrim part ) "s

generic type _def "1;"

generic-aS30socI "C"generic-assoc generic assoc I ti)"
expressions

if" expression

component <
identifier

*all

operator_symbol >;

discrete-range =<
type_range
range >;

param-link
identifier ^"1>"1

identifiers
IIt identifier

array-type_def =<
constrained array

* unconstrainid-array >;

discrim-decl
id-list "1:"1 subtype indication C initial

discrim dec15
discrim-decl

65U

p9 ~ ~~1- A. J% , ~ * . ~ 4 ~ ~ t



META DESCRIPTION FOR ADA

type def = <
rangeconstraint
float.ptconstraint
fixed pt-constraint
array type def
record _type_def
enum type def
acces_type_def
derivedtype-def
private-typedef >;

entry decl =
"entry" A identifier [ entry dimension ][ --formal part ] "'"

relation =
simple_exp [ relation_part ! ]

andcomp
relation ^  and-relation

or comp =
relation A [ or relation }

and-then comp
relation { and then relation }

or-else-comp =
relation A { orelserelation }

xor comp =
relation A { xor relation }

component assoc
[-choicelink A I expression

component assocs =
"I" component assoc

align_clause =
"at" "mod" simpleexp ";"

* name location -

name A "at" A simple_exp A "range" A range "'"

unaryoperator = <

1"not" >;

term z
," *'.-. factor { factors }

66

. ._S * p ''* S Ii ,9, - .S"~



META DESCRIPTION FOR ADA

terms =
addop term

assignmentstmt
name ".:'" expression ";;

if strt =
"if" A expression A "then"

+ seq of struts
{ @ elsif part --
@ Q else part I

@ "end" ' "if" "'"p , ;

loopstnt =
[ tag A 1 $0 ) [ iteration clause A ] "loop"

+ seq of stnts -
@ "end" A "loop"-C identifier ! $0 J "'"

proccail =
name C actual_param_part $0 ) ";"

case stmt =
"case" A expression A "is"

+ cases }
@ "end" A "case" "';"

block =
[ tag" 1 I declarej
@ "begin"

+ seq of stmts
C @ exception-s !-
@ "end" C A identifier I 2 "'"

exit stit =
" - "exit" [ A name ] C A when clause ]

return strut
"return" [ A expression ) "-"

gotostmt =
"goto" ^ name ""

entry_call =
name E actualparam_part ] "-"

delay_stnt =
"delay" A simpleexp ";"

abort stnt
"abort" A name [ names }

. raise stmt =
"raise" [ A name J ""

67



META DESCRIPTION FOR ADA

code stnt =
qualified-exp """

accept stut =
"accept" name [ formal part ]

[ accept action ] "'"

selective wait -

"select" [ condition link ]
+ select alternative

{ @ or clause -
@ @ else part ]

@ "end" "select" ";"

condentry_call
"select"

+ entrycall
[ + seq_ofstmts ]@ "else"

+ seq of stmts
@ "end" 1"seleci?" ";"

timed-entrycall :
"select"

+ entrycall
[ + seq ofstnts ]@~ "or"

+ delay alternative
@ "end" "1select" ","

null stmt
"null" " "

rangeconstraint
"range" A range

float_pt constraint
rdigits" A simpleexp £ rangeconstraint

fixedpt constraint =

wdelta,, A simpleexp E A rangeconstraint

index constraint =
"(" discrete-range { discreteranges } ")"

discrim constraint =
"(" discrim spec ( discrim specs } ")" ;

generic-is =
"is" generic name

68

' W% .'..% % . .*.* .



META DESCRIPTION FOR ADA

generic_type def =
generic discrete
generic integer
generic float
generic-fixed
array-ty7pe_def
access type def
private_type~deC >;

generic assoc=
E[ param-link Jgeneric-actual_param

type_range=
name E range-constraint]

range=
simple-exp "."simple-exp

constrained array
4"array" index constraint "of"

subtype_indication

unconstrained array:
"1array" tW("t index I indices } "1)"1 "o0f"

Asubtype indication

record_type def
"record"

+ component_list
@ "lend" " Irecord"i

enum type deC
"C"T1 enum lit [ enum-lits 1 ")"1

* access type_deC
"access" subtype indication

* derived_type def
"new A subtype_indication

private-typejdef = A~"rvt"

I "limited" "piae

entry dimension=
"("I discrete-range "1)"1

relation part =
relational
in-range $0 >;

and-relation =
"and" Arelation

69



META DESCRIPTION FOR ADA

or relation =
"or" ^ relation

and-then relation
Wand" "then" relation

or else relation z
"or" A "else" relation

xorrelation =
"xor" relation

choice link
choice { choices } "->"

factor
primary C power ! $0 3

factors
mul-op factor ;

add op =<

"&" $0 >;

elsif.part
"elsif" ^ expression "then"

4 seq of stmts

else part
"else"

+ seq of.stmts

tag

identifier ":" ;

iteration clause = <
while clause
for clause $0 >;

cases =
"when" choice ( choices } "=>"

+ seqofstmts

declare =
"declare"

{ + decl
1+ rep_spec!}
+ program_component

when clause =
"when" expression

70



META DESCRIPTION FOR ADA

qualified_exp =
name " agg_orexp

acceptaction

"do"
+ seq of stmts

@ "end" [ identifier ]

condition link -
"When" ^ expression "=>"

selectalternative = <
accept alternative
delay ilternative
terminate >;

or-clause =
"or" [ A condition link ]

+ select alternative

delay_alternative
delay stmnt
[ @ seqofstmts ];

discrete ranges-
'" discrete range

* discrimspec
- discrim link A ] expression

discrimspecs
i -I" ̂ discrimspec

generic name = <
name

generic discrete.

generic_integer
"range" A "<>"

generic-float:
"delta" It<>" ;

generic fixed =
-"digits" 11011

genericactual_param = <
expression
name
subtypeindication >;

71



META DESCRIPTION FOR ADA

index z
name ^ "range" "

indices =
t I" ^index

component list = <
components
nullcomp >;

enum lit = <
identifier
char-lit >;

enum lits =
,",, ^ enum lit

relational =
relop A simple_exp

inrange
simple exp [ A "not" ] ) "in" rangeorsubtype

choice = <
simpleexp
discrete-range
"others" >;

choices
choice

primary < <
decimal-number
name
nestedexp
based number $0
enum lit $0
char string $0
func-call $0
"nulT" $0
aggregate $0
allocator $0
type conversion $0
qualified_exp $0 >;

power =
"**" primary

mul op < <

"rod" $0
"rem" $0 >;

72



META DESCRIPTION FOR ADA

while clause =
"while" ^ expression

for-clause i
"for" ^ identifier "in" [ "reverse" ! ]

discreterange

agg_or_exp = <
aggregate
nestedexp >;

accept_alternative
accept stmt

@ @ se-jof stats ]

terminate
"terminate" "'"

discrim link
name ( names } ":>" ;

components:
{ @ component decl I
: @ variant part i ""

null comp
"tnull" "v;"

char-lit:
, ,,t , - , It, 1 ',

relop : <
11=:11

-it/

i <

<
11> 1

If>:" >;

range or subtype < <
range

S subtype indication >;

decimal-number
integer [ decimal_part ! $0 ] [ exponent ! $0

nestedexp =
"'(" expression ")"?

based-number :

integer ,,#,, basedinteger based decimal
,#, [ exponent ]

73.

| 73

i ''S.



META DESCRIPTION FOR ADA

allocator
"new" ^ name [ allocation ]

type-conversion
name "(" expression ")"

component decl
id list "'". ^ object_type [ initial I "'",;

variant_part =
"case" A name ^ "is"

{ + variant case }
@ "end" A "case" ";7 ; I

integer =
'09' f '091 ' }

r
decimalpart =

-"." integer

exponent
"E" C sign J integer

basedinteger -

'09:AZ:az' f '09(AZI_ az' I ;

based decimal-
"." based-integer

allocation = <
nested exp
aggregate
discrim constraint
index constraint >;

variant case :
"when" A choice [ choices } A

+ component list;

sign :< .

" >;

7'



META DESCRIPTION FOR ADAO

III. META DESCRIPTION FOR ADAO

The following is a META description for the ADAO subset

implemented in the full prototype syntax-directed

programming language environment. This subset is the $0

subset extracted from the previous ADA description.

compilation =
compilation unit

compilationunit : <
prcc' body >;

proc_body
proc_spec ^ "is"

{+ decl}
{ program_component }

@ "begin"
+ seq of stmts

@ "end" [ iaeniifier ] "'"

procspec s
"procedure" identifier

decl :<
object_decl >;

programcomponent : <
proc_body >;

seq_of stmts
strut
{ @ stint };

identifier
'AZiaz' '09!AZI laz' I

object decl
id list ":" [ "constant" ] object type

initial ]

strmt :
simplestnt ;

id list=
identifier { identifiers }

objecttype = <

subtypeindication >;

75

0-2 .. ,-*..* .-,-.,. *.....'



META DESCRIPTION FOR ADAO

initial -

,1":=" expression

simple strnt <
--assignment-stmt

if stint
loop -stint
pro.._call >;

identifiers =
I" ^ identifier

subtypeindication
name;

expression = <
relation
and comp
or comp >;

assignmentstmt =
name 1:-" expression "'",

if stmt =
-- j"if" expression ^ "then"

+ seq of stints
S@ elsif part }-
[ § else part ]
@ "end" W f fif "'"

loopstrut
[ iteration clause ] "loop"

+ seq of stnts
@ "end" ^ "loop"- lI;?I I

proc call =

name if " ;t

name <
identifier >;

relation
simpleexp [ relation_part

and comp =
relation I and relation }

or comp
- relation or-relation }

elsif-part
S"elsif" expression ^ "then"

• seq of struts

76

I* i,,[ rl . . . , , * ,, ,*99 ,.* *I[ 9 9 .-..L ,* h* **,==.-,.*.*9h- -9...



META DESCRIPTION FOR ADAO

elsepart =, "el se" + seq_ofstmts

iteration clause = <
while clause >;

simpleexp =
[ unary operator ! ) term { terms ;

relationpart = <
relational >;

andrelation rlto
"and" relation

or-relation
"or" A relation

while clause
"while" A expression

unaryoperator <

11not" >;

term =
factor { factors ;

terms z
add op term

relational = '.

relop A simple_exp

factor :
primary

factors :
mul-op factor

add op = <

-"1 >; ;

rel op = <
f t : II9

II / ft

">= > ;

7
~77



META DESCRIPTION FOR ADAO

primary = <
decimal number
name
nested_exp >;

mul op = <

"t/" > ;

decimal-number
integer

nestedexp =
"(I' expression ")"

integer =
'09' { '091_' } ;

p78

1I

I.,

-S.-

.4..

* ~ 4~.. 5

!7
rep

4



APPENDIX IV. SYSTEM USER'S MANUAL

SYSTEM USER'S MANUAL

FOR THE SYNTAX-DIRECTED

PROGRAMMING LANGUAGE ENVIRONMENT

4 79



SYSTEM USER'S MANUAL

User's Manual Contents

1. SYNTAX-DIRECTED EDITOR . . . . . . . . ......... 81

1.1 Entering the Editor ................. 81
1.2 Editor Commands . . . . . .. ........ 82

1.2.1 Focus Movement .... . . .... . 82
1.2.1.1 Move Right ... . . .... . 82
1.2.1.2 Move Left .... .............. 83
1.2.1.3 Move Long Right .. ......... .83
1.2.1.4 Move Long Left . . . . . . . . . . 83
1.2.1.5 Move Up . . . ............ 83
1.2.1.6 Move Down ... ......... . .. 84
1.2.1.7 Move Long Up . . . . . . ..... 84
1.2.1.8 Move Long Down . . . . . ..... 84
1.2.1.9 Move To Leaf ... ........... ... 84
1.2.1.10 Move To Last Focus .. ....... .. 84
1.2.1.11 Mark and Go. . . . . . . . . . .85

1.2.2 Edit Commands . . ........... 85
1.2.2.1 Insert Right .... 85 .
1.2.2.2 Insert Left . . ... .. . 86
1.2.2.3 Clip . . . .. .. . . . . 86
1.2.2.4 Copy . . . . . . .. . . . . 87
1.2.2.5 Kill ................. 87
1.2.2.6 Delete . . . . . . . . . . . . . 88

1.2.3 Control Commands ........ . . 88
1.2.3.1 Help . . . . . . .. . . . . . 88
1.2.3.2 Elide . . . . . .. . . . . . 88
1.2.3.3 Window . . ... 89
1.2.3.4 Invoke Compiler ......... 89
1.2.3.5 Invoke Interpreter ........... .. 90

1.2.3.5.1 Single Step ........... .. 90
1.2.3.5.2 Continue Execution .... 90
1.2.3.5.3 Restart . ........ 91
1.2.3.5.4 Exit Interpreter ..... 91

1.2.3.6 Invoke Lister . . .... 91
1.2.3.7 Exit Editor . . ...... . 91

1.3 Program Leaf Mutations .. . ...... . 91
1.3.1 Alternative Selection . ...... . 92
1.3.2 Set Selection . . ............. 92
1.3.3 Conditional Node Establishment ..... 92

2. TERMINAL CONFIGURATION . . . . . . . . . . . . . . . . 94

3. LANGUAGE SYNTAX DESCRIPTION . . ............. . 97

3.1 The META Preprocessor . . . . . . . . . . . . . 97
3.2 Language Description ..... .............. . 98
3.3 Format Controls ............. 99

40. 3.4 Language Grammar Dsn . 100.
3.5 Language Subsetting ... .......... . . . . 104

80



SYSTEM USER'S MANUAL

1. SYNTAX-DIRECTED EDITOR

The syntax-directed editor provides the capability to

create and modify programs under programmer direction. The

editor is responsible for maintaining the syntactic validity

of the program tree at all times. The editor also

coordinates the use of the other support tools in the

environment, such as the compiler and interpreter. For

program development, therefore, the user need only be

concerned with the use of the editor.

1.1 Entering the Editor

The editor is invoked by its name, SYNDE, followed by

the filename of the program to be edited. If the specified

file does not exist (it is a new file to be created by the

editor), the filename must be followed by a programming

language name. This name directs the editor to a syntax

description file (which must be present on disc) to guide

program synthesis. As an example:

SYNDE TEST ADAO

would be used to create a new program, called TEST, in the

ADAG language subset using the syntax description file named

ADAO.SDF.

SYNDE TEST

would be used to edit the previously created TEST program.

81



SYSTEM USER'S MANUAL

1.2 Editor Commands

The keystroke sequences Used to invoke particular

editor commands are specified by the user during terminal

configuration. Terminal configuration is described in

chapter 2 of this appendix.

The entire program subtree rooted at the focus

designates the entity being considered by the editor for

manipulation by the next command. The focus image is

highlighted on the display screen, typically by reverse

video or higher character intensity. The means of

highlighting is determined during terminal configuration.

The editing commands are grouped into three categories:

focus movement, edit commands and control commands. Each

command is responded to either by its effect on the display

of the program tree or with an appropriate display message.

1.2.1 Focus Movement

Focus movement to adjacent program tree nodes such as

parent, son or sibling form the primary type of movement

within the program tree.

1.2.1.1 Move Right I

The MOVE RIGHT command moves the focus to the right

sibling of the focus. If no right sibling exists, the tree

is ascended until some ancestor is found with a right

sibling which becomes the focus. This process attempts to

I8



SYSTEM USER'S MANUAL

maintain movement in the direction of an inorder traversal

of the tree.

1.2.1.2 Move Left

The MOVE LEFT command moves the focus to the left

sibling of the focus. If no left sibling exists, the tree

is ascended until some ancestor is found with a left sibling

which becomes the focus. This process attempts to maintain

movement in the reverse direction of an inorder traversal of

the tree.

1.2.1.3 Move Long Right

The MOVE LONG RIGHT command moves the focus to the

right and past any siblings which are generated from the

same repetition element in a production.

1.2.1.4 Move Long Left t

The MOVE LONG LEFT command moves the focus to the left

and past any siblings which are generated from the same

repetition element in a production.

1.2.1.5 Move Up

The MOVE UP command moves the focus to the parent of

the focus, if one exists. This raises the focus to a higher

syntactic level. If the new focus has children other than

the previous focus it will also have a larger frontier. In

this case, the extended cursor designating the range of the

focus subtree will enlarge to encompass a greater amount of
a, the program. This corresponds to a "zoom-out" effect.

83



SYSTEM USER'S MANUAL

1.2.1.6 Move Down

The MOVE DOWN command moves the focus to the son of the

focus, if one exists. This drops the focus to a lower

syntactic level. If the previous focus has children other

than the new focus, the extended cursor will shrink to

encompass a smaller amount of the program. This corresponds

to a "zoom-in" effect.

1.2.1.7 Move Long Up

The MOVE LONG UP command is equivalent to a series of

move up commands. The focus is moved up the tree until its

frontier becomes larger. The purpose is to force the type

of "zoom-out" effect described above and to increase the

size of the program fragment designated by the focus.

1.2.1.8 Move Long Down

The MOVE LONG DOWN command is equivalent to a series of

move down commands. It serves to force the "zoom-in" effect

* in contrast to the MOVE LONG UP command.

Ile

1.2.1.9 Move To Leaf

The MOVE TO LEAF command descends the tree from the Z

* current focus, following an inorder traversal to the first

leaf node. This is the qul.zkest way to get to the t~ttom of

the tree where most of the initial program entry occurs.

1.2.1.10 Move To Last Focus

The previous focus location is saved by editor commands

which change the focus. A return to the previous focus is

84

4?~~~~~~- J A.'.% . ' ~ *II.~S



SYSTEM USER'S MANUAL

then accomplished by the MOVE TO LAST FOCUS command.

1.2.1.11 Mark and Go

Ten markers (pointers into the tree) are kept in the

file information block for a program tree. The MARK command

may be used to clear an existing marker at the focus or to

set any marker zero through four to point to the focus.

Markers five through nine are reserved by the system to mark

errors detected by other tools in the environment, such as

the compiler. The GO command may be used to move the focus

to any requested marker that is set. The GO command may

also be used to move the focus to the root of the program

tree or to the root of a clipping tree which is Lsed for cut

and paste operations described below. Markers are preserved

in the tree from one editing session to another.

1.2.2 Edit Commands

1.2.2.1 Insert Right

The INSERT RIGHT command may be used to insert a

conditional element as the right sibling of the focus. The

type of the element to be synthesized into the tree is

determined from the production definition of the parent of

the focus. A valid conditional element must be capable of

being inserted at that point. An Qptional element must not

have already been synthesized into the list since only one

is allowed. Inserting a second repeater immediately behind

an identical, unestablished repeater is disallowed as a

useless, although syntactically valid, operation.

85

S gP~~S **-S. |



SYSTEM USER'S MANUAL

If two or more successive conditional elements exist in

the production, the first may need to be inserted before the

second may be inserted. This results from the need to place

the focus on the node representing the element preceeding

the one which is to be inserted. If this node does not

exist, it must be inserted, but may be deleted after its

use.

1.2.2.2 Insert Left

The INSERT LEFT command is the equivalent of the INSERT

RIGHT command for inserting a conditional element as the

left sibling of the focus. This command is required to

insert a conditional to the left of the leftmost sibling.

1.2.2.3 Clip

The CLIP command copies the subtree designated by the

focus to a "clipping" tree. Any previous clipping is

discarded and the program tree remains unchanged. This

represents the "cut" portion of a "cut and pastel' operation.

A pointer to the clipping tree is maintained in the file

information block which accompanies the program tree. The

clipping tree remains with the program tree during its

lifetime until replaced by another clip type operation. The

clipping tree may itself be edited by using the GO command

to move the focus into the clipping tree.

As a safety precaution, to preserve the clipping tree

from inadvertant loss, the clip operation is not allowed and

the clipping tree remains unchanged if the focus is a leaf

86



J~ - t'-u '.I &5 4-_.1rWMrV_1V-.z IrV W z W' fLW _

SYSTEM USER'S MANUAL

node. This would not be a significant operation since leaf

nodes are degenerate subtrees and are easily regenerated.

1.2.2.4 Copy

The COPY command may be used to attach a copy of the

clipping tree to the program tree at the focus node. The

previous focus subtree is discared and is lost, without

recovery. The clipping tree remains unchanged. This

represents the "paste" portion of a "cut and paste"

operation. The copy operation is allowed only if the

syntactic type of the root of the clipping is the same as

that of the focus, or if the focus represents a non-terminal

with an alternation definition and the root of the clipping

is one of its alternatives. Here the clipping is attached

below the focus rather than at the focus. The syntactic

type of the focus is displayed in the header line of the

main window. The syntactic type of the clipping may be

observed by requesting display of the clipping in the second

window with the window command.

1.2.2.5 Kill

The KILL command may be used to delete the focus from

the program. If the focus represents a conditional element,

it is simply deleted. Otherwise the node is required for

syntactic validity. In this case, its sons and their

subtrees are deleted. If the remaining leaf node represents

a non-terminal with a concatenation definition, the node is

re-expanded producing a new template. No recovery is

87



-NRR TIP J7 T .

SYSTEM USER'S MANUAL

possible from the KILL command. The DELETE command should

be used where recovery is desired.

1.2.2.6 Delete

The DELETE command is equivalent to a CLIP command

followed by a KILL command. The focus is copied to the

clipping tree and is then deleted from the main program

tree. Material lost from accidental deletes may be

recovered with t'L'e copy command. As in the clip command,

the focus is not copied if it is only a leaf node. This

command is disallowed when the focus is in the clipping

subtree itself.

1.2.3 Control Commands

The control commands provide the user with control over

program display and interface to other environment

programming tools.

1.2.3.1 Help

* The HELP command toggles the users request for help

menus. Help defaults to on at the start of the editing

session. The only help menu currently implemented is the

list of alternatives available for selection when the focus

is at a leaf which is an alternation node.

1.2.3.2 Elide

The ELIDE command toggles the elide flag for the focus

node. If the node was not previously elided, the portion of

the program tree contained in the focus becomes the extent

88

. *v%*. ~ :-~Y~~* ~ ~*%



AD-0124 S43 A SYNTAX-DIRECTED PROGRAMING ENVIRONMENT FOR THE AD 2/2
PROGRAMING LRNGUAGE(U) AIR FORCE INST OF TECH
WRIGHT-PRTTERSON RFE ON SCNOOL OF ENGINEERING

UNCLSSIFIED S E FERGUSON DEC 02 RFIT/GCS/NR/82D-1 F/O 9/2 MLElllllllllll
llllllll



*EEEE 11__ ___ ____ ____

1W1.0 ILS0 U-1 -
3&6

1. 1 111 . 11111=N Il B



SYSTEM USER'S MANUAL

of the program image displayed on the screen. Upon moving

up the tree from the elided node, the display of its subtree

is suppressed and replaced with a string supplied by the

user during terminal configuration.

1.2.3.3 Window

The WINDOW command is used to control the presence of a

second window. The window may be requested to display the

clipping tree or any of the subtrees pointed to by markers

zero through nine or to be closed entirely. The focus may

not be moved to the second window, it is intended' for

display only, not editing. The window will, however,

reflect any changes made to its displayed subtree that are

accomplished in the main window. The window is

automatically closed if the subtree being displayed is

deleted by some edit command in the main window. The

syntactic type of the root of the displayed subtree is given

in the header line of the window.

1.2.3.4 Invoke Compiler

The language specific compiler for the program tree

being edited is loaded and executed. The compiler flags any

errors using program tree markers five through nine and will

halt when all markers have been used or when compilation is

complete. After compilation, execution returns to the

editor and the focus is set to the node addressed by error

marker 5, if set, or to the root of the program tree.

89



SYSTEM USER'S MANUAL

1.2.3.5 Invoke Interpreter

The interpreter is loaded and executed to process the

program tree being edited. The interpreter compiles the

program to create pseudo-code for interpretation. If errors

are encountered, return to the editor follows the same

process as for invocation of the compiler.

Before each instruction is executed, the topmost

elements of the runtime stack are displayed along with the

next instruction to be executed. The interpreter commands

available to the user are explained below.

1.2.3.5.1 Single Step

The SINGLE STEP command, invoked by 'S' or SPACE causes

execution of the displayed instruction. If this instruction

is the last in the program, the interpreter is reset to

resume execution at the start of the program and the stack

is returned to the initial state. The focus of the display

is moved to the tree node associated with the instruction.

1.2.3.5.2 Continue Execution

The CONTINUE EXECUTION command is invoked with 'C'.

Execution of the program is allowed to continue until

interrupted by another command. Each instruction execution

is accompanied by update of the program tree display and

dump of the stack and next instruction. Execution recycles

to the start of the program after reaching the end.

90

" "- . " ' '" " ' . . . .



SYSTEM USER'S MANUAL

1.2.3.5.3 Restart

The RESTART command, invoked by 'R', resets tne

interpreter to resume execution at the start of the program.

The stack is returned to the initial state.

1.2.3.5.4 Exit Interpreter

The EXIT INTERPRETER command, invoked by 'El, returns

control to the editor to resume editing of the program tree.

1.2.3.6 Invoke Lister

The language independent lister is loaded and executed

to create a text image of the program tree being edited.

* The program lister produces a text format source file from

the program tree for use in generating hardcopy listings or

for transfer to a text-based environment. The text image is

generated with unestablished conditional nodes omitted,

*since these are ignored by the compiler. Elided subtrees

are not suppressed from the image. Control returns to the

editor.

1.2.3.7 Exit Editor

The program tree being edited is saved and the editing

session is terminated.

1.3 Program Leaf Mutations

The leaves of the tree are points at which user

decisions are made to extend the program. Alternatives are

selected, conditional nodes are established into the tree

and character values for sets are supplied.

91



SYSTEM USER'S MANUAL

1.3.1 Alternative Selection

A leaf node which has an alternation definition

requires the selection of one of its alternatives. If help

is toggled on, the list of alternatives is presented at the

bottom of the screen. The user merely types the name of the

desired alternative. Command-completion by the editor

speeds the selection and reduces the number of required

keystrokes by determining the portion of the name common to

all remaining alternatives. The alternatives for the ADA

subunit, for example, are proc_body, func_body, pack-body

and task body. After typing 'p' , the list is reduced to

proc_body and packbody. An 'r', then, reduces the list to

the single alternative of proc_body.

1.3.2 Set selection

A leaf node which represents a set may accept a

character value according to the range of characters given

by its name. That name also represents the node's syntactic

type which is displayed in the header line of the display 4
window, providing the user with a range of valid characters.

The value of any valid character typed will then be saved in

the node and represent it in the program display image.

1.3.3 Conditional Node Establishment

Conditional leaf nodes require user interaction to

establish them into the tree. If the node represents an

alternation or a set, this interaction is implied by

selecting an alternative or typing a character,

92



SYSTEM USER'S MANUAL

respectively, as described above. If the node represents a

concatenation non-terminal or a string, typing the first

character of its displayed name will establish the node.

When established, the node's surrounding brackets or

braces are no longer displayed. If the conditional being

established is a repeater, a new, unestablished repeater of

the same type is inserted after the focus in anticipation of

the user's desire to later establish another such node in

the tree.

93.



SYSTEM USER'S MANUAL

2. TERMINAL CONFIGURATION

A configuration program, CONFIG, is used during

installation to interactively prompt the user for

information which is supplied to the system in a terminal

description file. This file includes the screen dimensions

and terminal strings to accomplish a variety of terminal

functions. The terminal description file also contains the

list of strings to be interpreted as specific commands by

the editor so that they may be tailored to the control key

or function key capabilities of a given terminal.

CONFIG may be invoked with:

CONFIG *

where the "*" is optional and specifies that the existing

terminal description file (TERMINAL.TDF) is to be cleared

before use. The user is given the opportunity to modify the

recorded terminal characteristics and input command

sequences.

CONFIG will inquire at times if the user wants to

modify or reexamine portions of the terminal description.

Respond to questions with a "" or "y" for yes or any other

character for no.

CONFIG will first request information on the terminal's

lines per screen, characters per line and number of lines to

be used in the second window. CONFIG will prompt the user

94

' ,: " " '., " " -- .- "- " " " ". ", ", " • ,". .- "- "- " "." •" "- " • .- .- ,. .- € "- "" " "e ." "" " ' " o "



SYSTEM USER'S MANUAL

for numeric information by supplying the current value and

an inclusive range of valid values. Enter a new value or

type RETURN to retain the previous value. Invalid values

are rejected.

Next, CONFIG will request input sequences to represent

input commands. CONFIG presents the user with the current

sequence (if one is present) and the option to change it or

proceed to the next item. Control keys in a sequence are

displayed as ^x where x is the control character plus a bias

of 64 to produce a printable character. For example, a

line-feed character (ASCII value 10) will display as ^J.

CONFIG provides several opportunities during terminal

configuration to reexamine character sequences and correct

Mistakes. When entering character sequences for input

commands, merely strike the keys desired to invoke the

command function. Input commands Must begin with a non-

printable control character. Each input command sequence

must, of course, be unique.

CONFIG will then request output sequences to perform

varies display funtions. These are entered in the same

manner as input sequences. These sequences are: p

-intialize terminal: Sent to the terminal at the

start of the editing session to allow for

special setup.

95



SYSTEM USER'S MANUAL

- display tab: Used for program indentation. This

should contain only printable characters,

Usually a number Of spaces.

- mark elided material: Used to represent an elided

program subtree on the display.

- divide windows: A single character used to fill the

header line of each window.

- clear screen: Clears the terminal screen.

- position cursor: Prefix of display command to

Position the cursor on the screen. This

sequence will be followed by the display line

(first is 0) Plus 32 and the display column

Plus 32. Other forms of display cursor

addressing are not yet supported by terminal

configuration .

-erase to end of line: Clears the display from the

cursor location to the end of the line.

- enter reverse video mode: Sets the terminal into a

highlight mode, such as reverse video, to

distinguish the focus.

- exit reverse video mode: Exit the display mode set

by the "enter reverse video mode"' sequence.

- terminate terminal: Sent to the terminal at the end

of the editing session to clean up the

terminal status.

96



-I- -. f:. 7- - TZ ,7

SYSTEM USER'S MANUAL

3. LANGUAGE SYNTAX DESCRIPTION

3.1 The META Preprocessor

The syntax description actually used by the environment

is a condensed representation of a textual META syntax

description. The META preprocessor is invoked to create a

syntax description file from a textual META description by a

command of the form:

META filename subset index

where filename.SYN is the name of a textual META syntax

description. The subsetindex (as described later)

indicates those elements of the description to be eliminated

to form a subset. The syntax description file to be created

is given the name filename.SDF, where filename may be

extended by digits from the subset-index. As an example the

command:

META ADA

would create the syntax description file ADA.SDF from the

textual description in ADA.SYN. The command:
.4

META ADA $0

would create the syntax description file ADAO.SDF from the

textual description in ADA.SYN while removing elements

marked with subset 0.

97

N:' 1K"



SYSTEM USER'S MANUAL

as 3.2 Language Description

A META syntax definition is presented as a sequence of

production rules, each defining some non-terminal in the

language grammar. The first production rule in the

description must define the non-terminal representing the

language goal symbol. Appendix I specifies the format of a

META description.

Each production rule may be either a concatenation or

alternation definition. A concatenation is an ordered

sequence of elements and represents a template to be laid

into the program tree structure beneath a node which maps to

the non-terminal being defined. Elements in a concatenation

list may be conditional (options or repeaters). An option

is an element enclosed in brackets ("[I' and "I") and denotes

an optional element. A repeater is an element enclosed in

braces (t"P? and ")"I) and denotes an element that may appear

zero or more times. Options and repeaters may contain only

a single element. The hide indicator ("I1") may be Used to

mark conditional elements so they will not be automatically

synthesized into the -program tree. A concatenation list

must contain at least one unconditional element to represent

the production in a program tree.

An alternation is a list of alternatives, each a single
unconditional element. The list is surrounded by angle

brackets ("<If and '1>11) to distinguish it from a

concat,",Ion

98

a 0 9 % ~ % .A



SYSTEM USER'S MANUAL

4), A syntactic element may be a non-terminal identifier, a

qN 4 terminal in the form of a literal string enclosed in quotes

or a set construct. Each non-terminal must be defined

exactly once in the syntax definition. Literal strings are

typically used to represent reserved words and delimiters in

the language grammar.

The set construct represents a compact means of

expressing an alternation consisting of displayable ASCII

characters. The set's alternatives may be single characters

or pairs of characters which specify an inclusive range in

the ASCII character set. META requires the set alternatives

to be presented in ascending ASCII order. Sets are

typically used in the specification of identifiers and

numbers (as they are commonly called) whose individual

character component values are determined during the

synthesis process.

3.3 Format Controls 9

Program display formatting controls are embedded in the

syntax description to allow the reconstruction of a textual

display image from the abstract form of a program tree.

A space mark ("IAll) preceeding or following an element

results in the placement of a corresponding space in the

program tree image. A newline mark C"1@1) preceeding an

element causes a new line to be generated in the program

image followed by the proper number of tabs for the current

level of textual indentation. 9

99

N9



SYSTEM USER'S MANUAL

An indentation mark (,")preceeding an element

indicates that the current indentation level is to be

increased and causes a new indented line to be generated.

The entire program subtree beneath a node mapped to an

indented element will be indented, after which the prior

indentation level is restored.

Format controls for an element take effect only when

that element is synthesized into the program tree. Format

controls for conditional elements, therefore, must be placed

carefully to insure that the appearance of a structure

remains desirable with or without the presence of a

conditional and whether or not it has been established.

3.4 Language Grammar Design

When creating a META description for a program language

it may be convenient to examine existing definitions

prepared in some other syntax definition language. Extended

BMF definitions are particularly useful and require the

least effort to translate. "

Extended BNF notation, in general, allows a more

complex form of expression than is available with META.

Specifically, META disallows the use of complex expressions

within options, repetitions and alternatives. This

restriction generally requires an additional production rule

to define a new non-terminal to replace a complex

expression in an Extended BNF definition to create an

equivalent META definition. As an example, the ADA

100



SYSTEM USER'S MANUAL

reference manual defines an identifier list in a form of

Extended BNF as:

identifier list::
identi"fier {,identifier

META will not allow two elements (C"," and identifier) within

an option. The addition of a second production eliminates

* the problem resulting in the equivalent META definition:

id list=
identifier fidentifiersI,

identifiers=
""identifier

Most of the problems encountered when translating from

* Extended BNF to META are of this type.

It is also important for the grammar designer to be

aware of the impact particular decisions may have on the

syntax-directed environment. The syntax-directed editotr

* makes demands not normally required of a language grammar.

Achieving a desired display format and creating a

natural and meaningful editing process for the programmer

are human factors considerations which may require

modifications to the language grammar. Conditional elements

and alternations in a META grammar definition represent

decision points or places requiring programmer attention

during program editing. These situations should therefore I

be minimized where possible or placed where the decisions

seem most natural.

101

-' ~ .' .
1

.,Ji%~ % W V~% . . ** .. .*. -~' ~' ~ *. *; .~1 . ~ . * - * -* *. V. V



SYSTEM USER'S MANUAL

If an alternation contains an element which is itself

defined by an alternation, the user is required, when

editing, to make two successive decisions. This can be

reduced to one decision by including each alternative of the

second definition as an alternative in the first. In this

manner, the ADA reference manual definitions for primary and

literal:

primary :::
literal 1 aggregate I name 1 allocator
function call 1 type conversion4I

qualifiedexpression-I (expression)

literal ::=
numeric literal enumeration literal
character string null

were reduced to a single equivalent META definition:

primary= <
decimal number name nested expression
based number enum lit char-string
func call "null" -aggregate- allocator
typeconversion qualified expression >;

by including literal's alternatives within primary. The

alternatives for numericliteral were likewise moved to the

definition of primary. These modifications were achieved at

no cost since the non-terminals for literal and

numeric literal are referenced only once. Note also that

the alternatives have been rearranged in an attempt to name

the more frequently used ones first, the same order in which

they will be displayed to the user for selection during the

editing process.

102



SYSTEM USER'S MANUAL

The selection of non-terminal identifier names

represents another design concern. Most names will appear

at some time in the display of a program tree as a

placeholder for an incomplete program fragment and to

indicate syntactic type. Names chosen should therefore have

some easily understood mnemonic value but should not be so

long as to clutter the display screen.

Unfortunately, the limitations placed on language

definitions by META may create complications in the editing

process. The ADA reference manual definition for an

identifier, for example, is:

identifier ::=
letter { [ underscore ] letter or digit }

which eliminates the possibility of double or trailing

underscores. An equivalent META definition removing the

complex expression within the repetition would be:

identifier =
'AZaz' { scoreletter digit }

score letterdigit -

!] '09:AZ'az'
r.

This additional production requires an additional keystroke

for each subsequent letter or digit. An alternative META

definition, eliminating the additional production, is:

identifier =
'AZlaz' { '09:AZ Ilaz' }

This provides a much smoother format for identifier entry at

103



SYSTEM USER'S MANUAL

ANI the expense of allowing illegal double or trailing

underscores, errors which must be detected by the compiler.

The added ease of identifier entry, a common occurence, was

considered significant enough to warrant deferring detection

of such trivial (and perhaps unnecessarily contrived) errors

to the compiler phase. Fortunately, most design decisions

do not require compromising the syntactic validity of

program trees produced by a grammar.

3.5 Language Subsetting

Alternative and conditional elements in META may be

marked with a subset index indicator which is a dollar-sign

("$")followed by a series of digits ("10" to "7'"), each

indicating a subset within which the element is too be

restricted. The META preprocessor can be instructed, via

the subset-index argument in the invocation command, to

omit such elements when building a syntax description file

from a META definition.

When all references to a non-terminal are removed by

subset exclusion, its production rule is no longer required.

All unreferenced rules are eliminated from the resulting

syntax description file to conserve space.

10~4



VITA

Scott E. Ferguson was born on 31 May 1956 in East St.

Louis, Illinois to Ed and Helen Ferguson. He attended high

school at Belleville Township East in Belleville, Illinois

as class valedictorian in 1974. In May of 1978 he graduated

from the United States Air Force Academy where he earned a

Bachelor of Science Degree in Computer Science. His first

active duty Air Force assignment was with the 4501 Computer

Services Squadron at Langley AFB, Virginia. He then entered

the Air Force Institute of Technology at Wright Patterson

AFB, Ohio in June of 1981 as a graduate student in computer

science.

Captain Ferguson was married to Mary Stevens on June 7,

1978.

Permanent address: 1 Berkley Court
Fairview Heights, IL 62208

105
. _.



! oa

SECURITY CLASSIFICATION OF THI 04,3E r"ti., Date E.ntered)

REPORT DOCUM ENTATION PAGE REA'D INSTRUCTIONS
REPORT DOCUMENTATION PAGE-BEFGRr COMIPLETING FORM

1. REPORT NADEn. RGOVT ACCFSSONNO. 3. PECIF'rT' CATALOG NUMBER

Za. . TITLE(and Subtitle) S. TVFE ZI F.EPCkUT & PERIOD COVERED

S. PERFORMING ORGV REPORT NUMBER

7. AUTHOR(s) 11. CONIRACT CA GRANT NUMBER(s)

.. ~ ;t . Trc on
Ca'.t. U" "

9. PER'O MING ORGANIZATION NAME AND ADDRESS 10. POGP.AM .LEMENT. PROJECT, TASK

ARES A WORK UNIT NUMBERS .e

-Air Force Institute of Technology (AFIT-EN)
Wright-Patterson Air Force Base, OH 45433

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Air Force Avionics Laboratory (AFIVAL/AAAF-2) -.- e L .
Wright-Patterson Air Force Base, OH 45434 13. NIJMEPC f PAGES

14. MONITORING AGENCY NAME h ADDRESS(If dliffetegt from Controlling Office) IS. SECURITY CLASS. (of this repor: )

5. DECL ASSIFICATION 'DOWN GRADING
SCHEDULE

IS. DISTRIBUTION STATEMENT (f this Repot)

- ~.-.roved f'or public realease: distri'bution un~ir;itc&.

17. DISTRIBUTION STATEMENT (of the ebstract entered In Block 20, It different from Report)

Il. SUPPLEMENTARY NOTES - '•-"'zroved for -2Lhlic releo ! ''"
SJAW An .v._r-

: -. o , ... D , .. I.op., 1 4 FEB 1983
] P', ';- A.- ,.,,rect r of Trf atcr -

19. KEY WORDS (Continue on reverse side if necessary and Identify by block number)

.4 20. ABSTRACT (Contlnue an reverse aide If necessary ind identity by block number);';" i d~ ::' ,ra i :rc i~e th 2'--oz ,-, an5 i-i-lc entation -1 7
4. . ro~r , .n su~rtenvir-ons, nt Alr th" .. c ' ].Encua[:e . ;az- d.. .. ,

'itor. a tr, ..... -u:.- 'h. ,  t
'<rototv- o n i o . l i- it?] t,- P S _!1 .1 SUa] s '--t, t e full :

lan-ua:-t is su-Irt ',, th r-enr.-r o' t*,p rmi rnnrnt. " -

.'' hrcr :. c& c o: 2'r0. i vliv , ro r a min lanp'- .
-C T.e o-rootve 'n:s - 'irt ' environm.-n t e'monstrates the aN'l --

DD JAN 7 1473 EDITION Ol I NOV S IS OBSOLETE SR"C" O Tat

:: ~SECURITY CLASSIFICATION OF THIS PAGE (ften Data nereo -

Nam VNr



SECURITY CLASSIFICATION OF THIS PAGE("an., Does Enhered)

to rn~lucrc n-7rarner vile ti furin- 1 "n -:eli-inti-7

* ~ -,asn v- r l'n ixica1 analy.iis in tecvir.I- roantro-s
ctructur2 al!-n foc~ ~r t'ie cvo-:ien of z 'cr ior cn-viron-ent

t7nc'A z

SEUIYC SIVCAINO TI G1e aeEtrd

'J%



-i%.:,% AI


